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Certain pivotal results from various applications of Abstract Differential Geometry
(ADG) to gravity and gauge theories are presently collected and used to argue that we
already possess a geometrically (pre)quantized, second quantized and manifestly back-
ground spacetime manifold independent vacuum Einstein gravitational field dynamics.
The arguments carry also mutatis mutandis to the case of free Yang–Mills theories,
since from the ADG-theoretic perspective gravity is regarded as another gauge field
theory. The powerful algebraico-categorical, sheaf cohomological conceptual and tech-
nical machinery of ADG is then employed, based on the fundamental ADG-theoretic
conception of a field as a pair (E,D) consisting of a vector sheaf E and an algebraic con-
nection D acting categorically as a sheaf morphism on E’s local sections, to introduce a
‘universal’, because expressly functorial, field quantization scenario coined third quan-
tization. Although third quantization is fully covariant, on intuitive and heuristic grounds
alone it formally appears to follow a canonical route; albeit, in a purely algebraic and, in
contradistinction to geometric (pre)quantization and (canonical) second quantization,
manifestly background geometrical spacetime manifold independent fashion, as befits
ADG. All in all, from the ADG-theoretic vantage, vacuum Einstein gravity and free
Yang–Mills theories are regarded as external spacetime manifold unconstrained, third
quantized, pure gauge field theories. The paper abounds with philosophical smatterings
and speculative remarks about the potential import and significance of our results to
current and future Quantum Gravity research. A postscript gives a brief account of this
author’s personal encounters with Rafael Sorkin and his work.
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1. MOTIVATIONAL REMARKS

Modern fundamental physics may be cumulatively referred to as ‘field
physics’. The theoretical concept of ‘field’ is the cornerstone of our most suc-
cessful and experimentally verified theories of Nature: from the macroscopic
General Relativity (GR) describing gravity which shapes the large scale structure
of the Universe, to the microscopic Quantum Field Theory (QFT) describing the
structure and dynamical transmutations of matter at subatomic scales (Auyang,
1995; Cao, 1997).

At the same time, field theory in general, at least as it has been thought of and
practiced almost ever since its inception until today, appears to be inextricably
tied to a background manifold, which is physically interpreted as the ‘spacetime
continuum’—be it for example the curved Lorentzian spacetime manifold of GR,
or the flat Minkowski space of the flat (:gravity-free) QFTs of matter. Indeed, the
current theoretical consensus maintains that it takes a mathematical continuum
such as a locally Euclidean space4 to accommodate systems with an infinite
number of degrees of freedom—the currently widely established conception of
fields. The bottom line is that field theory, at least regarding the mathematical
means that we have so far employed to formulate it, relies heavily on the notions,
methods and technology of Classical Differential Geometry (CDG), which in turn
is vitally dependent on (the a priori assumption of) a base differential manifold
to support its concepts and constructions (Göckeler and Schücker, 1990; Kriele,
1999). Let us reduce this to a ‘boxed slogan’:

S1. The basic mathematical framework of field theory is the CDG of smooth
manifolds.

In fact, such has been the influence of CDG on the development of field theory
(and vice versa!) that it is not an exaggeration to say that it is almost impossible
to think of the latter apart from the former. One should consider for instance the
immense influence that the modern developments of CDG in terms of smooth
fiber bundles have exercised on the way we view and treat (classical or quantum)
gauge field theories of matter, including gravity (Ivanenko and Sardanashvily,
1983; Göckeler and Schücker, 1990; Auyang, 1995; Cao, 1997; Kriele, 1999).

Of course, that the theoretical physicist has so readily adopted the mathemat-
ics of CDG may be largely attributed to the fact that her principal aim—ideally,
to discover and describe (:mathematically model) the laws of Nature—coupled to
her theoretical requirement that the latter be local mathematical expressions, have
found fertile ground in the manifold based CDG, as our second boxed slogan posits:

4 Finite (e.g., spacetime) or infinite-dimensional manifolds (e.g., the fields’ configuration spaces).
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S2. Physical laws are to be modelled after differential equations.

For example, more than a century ago, Bertrand Russell (1948) went as far as to
maintain that

“The laws of physics can only be expressed as differential equations.”

Indeed, the background geometrical locally Euclidean continuum (be it spacetime,
or the field’s configuration space) provides one with a smooth geometrical plat-
form on which the apparently necessary principle of infinitesimal locality—the a
priori theoretical requirement for a smooth causal nexus between the world-events
triggered by contiguous field actions—can be snugly accommodated and (differ-
ential) geometrically pictured (i.e., represented by differential equations and their
smooth solutions)

At the same time, few theoretical/mathematical physicists—general rela-
tivists and quantum field theorists alike—would disagree that the pointed back-
ground geometrical spacetime manifold is the main culprit for various pathologies
that GR and QFT suffer from, such as singularities and related unphysical infini-
ties (Clarke, 1993). In principle, any point of the underlying manifold can be the
locus of a singularity of some physically important smooth field—a site where
the field seems to blow up uncontrollably without bound and the law (:differential
equation) that it obeys appears to break down somehow. Given that few physi-
cists would actually admit such divergences (:infinities) as being physical, it is
remarkable that even fewer would readily abandon the manifold based CDG as
a theoretical/mathematical framework in which to formulate and work out field
theories. They would rather resort to manifold and, in extenso, CDG-conservative
effective approximation (e.g., perturbation) methods and would take great pains to
devise quite sophisticated regularization and renormalization techniques to cope
with the infinities, instead of doing away once and for all with the background
geometrical spacetime manifold M . In view of S1, this is understandable, because
if M will have to go, so will field theory, and then how, other than by differential
equations proper set up by CDG-means, would physical laws be represented (S2)?
Mutatis mutandis then for the geometrical picturization of the local field and par-
ticle dynamics: how, other than the usual imagery depicting the propagation and
interaction of fields (and their particles) on a continuous base spacetime arena,
could one geometrically picture (:represent) the field and particle dynamics?5

5 Think for example of the physicist’s ‘archetypical’ theoretical image of dynamical paths (:trajectories)
traversed by particles during their dynamical evolution. These are normally taken to be smooth curves
in a 4-dimensional space-time continuum.
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Especially when it comes to Quantum Gravity (QG), the aforesaid resort to
CDG-conservative means may be justified on a reasonable analogy (A) and its
associated hopeful expectation (E); namely that,

• A. Much in the same way that the background manifold conservative
quantization of the classical CDG-based field theories of matter man-
aged to alleviate or even remove completely the unphysical infinities
via ‘analytic’ renormalization ( e.g., QED ‘resolving’ the infinities of
Maxwellian electrodynamics), so QG—regarded as Quantum General
Relativity (QGR)6 —could (or more demandingly, should!) remove sin-
gularities and their associated infinities.

• E. Thus, all we have to aim and hope is for a better, more subtle, refined and
powerful ‘Analysis’7 —perhaps one with formal quantum traits inherent
in its formalism; albeit, one that still essentially relies on a background
geometrical manifold in one way or another,8 for how else could one do
field theory—be it quantum field theory—differential geometrically (S1)?

Alas, QG has proven to be (perturbatively) non-renormalizable, plus it appears to
mandate the existence of a fundamental space-time length-duration—the Planck
scale—below which the spacetime continuum is expected to give way to something
more reticular and quantal: ‘quantized spacetime’, so to speak. So, there goes our
cherished field-theoretic, CDG-based, outlook on QG? Not quite, yet.

Prima facie, in view of the existence of Planck’s fundamental cut-off space-
time scale, that QG (viewed and treated as QGR) is non-renormalizable is not
a blemish after all. Indeed, the (perturbatively) renormalizable (flat) continuum
based (quantum) gauge theories describing the other three fundamental forces do
not have such dimensionful constants (:space-time scales, or ‘coupling’ constants
combining to produce those scales) inherent in their theoretical fabric. In turn,
the Planck length is the raison d’être et de faire of non-perturbative QGR. The
latter, at least in its present and most promising gauge-theoretic formulation as
Loop Quantum Gravity (LQG) and Cosmology (LQC) (Rovelli and Smolin, 1990;
Thiemann, 2001, 2002; Smolin, 2004) which is based on the Ashtekar formalism
for GR (1986), effectively removes the continuous manifold picture of space-
time and resolves the singularities-cum-infinities that the latter is responsible for

6 Here, by QGR we understand in general QG approached as a QFT—a quantum (or quantized,
canonically and/or covariantly) field theory of gravity on a background differential spacetime manifold
(Thiemann, 2001, 2002), with the classical theory being GR (on the same background!; see below).

7 Hereafter, the terms ‘CDG’, ‘Analysis’ and ‘Differential Calculus on Manifolds’ shall be regarded as
synonyms and used interchangeably.

8 Here we have in mind various attempts at applying a ‘quantized’ (e.g., ‘noncommutative’) sort of
Calculus to quantum spacetime, gravity and gauge theories—Connes’ Noncommutative (Differential)
Geometry being the ‘canonical’ example of such an enterprize (Kastler, 1986; Connes, 1994, 1998;
Chamseddine and Connes, 1996, 1997; Madore, 1999).
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by means of ‘spacetime quantization’ (Rovelli and Smolin, 1995; Ashtekar and
Lewandowski, 1997a,b; Thiemann, 1998; Bojowald, 2001; Husain and Winkler,
2004; Modesto, 2004). However, the mathematical formalism devised recently to
formalize and carry out that quantization, Quantum Riemannian Geometry (QRG)
(Ashtekar, 2003), is still drawing amply from a background differential manifold
for its differential geometric expression. All in all, the QRG-based LQG and LQC
fulfill the aforementioned expectations (A,E), and what’s more, without resorting
to perturbative renormalization arguments, techniques or results. En passant, let
it be noted here that the other approach to (non-perturbative) QG currently com-
peting with LQG for popularity (and monarchic hegemony!), (super)string theory
(perturbative or not), also heavily relies on the manifold based CDG for its concepts
and techniques. One should think for example of how higher-dimensional (real
analytic or holomorphic) differential manifolds such as Riemann surfaces, Kähler
spaces, Calabi-Yau manifolds, Z2-graded manifolds (:supermanifolds), etc., have
become the bread and butter mathematical structures in current string and brane
theory research.

With the remarks above in mind, an overarching theoretical requirement
or ‘principle’ underlying most (if not all) of the current (non-perturbative) QG
approaches, including LQG and string theory, is that of background independence
(Ashtekar and Lewandowski, 2004; Smolin, 2005; Seiberg, 2006). Expressed as
a theoretical imperative:

B. The true quantum gravity must be a background independent theory.

The original requirement for ‘background independence’ pertained to ‘background
geometry indepe ndence’—i.e., that QG should be formulated in a background
metric independent way. Lately, the term ‘geometry’ is understood and used in
the broader (mathematical) sense of (a structureless set endowed with some)
‘structure’ (MacLane, 1986), so that a background independent formulation of
QG means one that does not employ any fixed background structure—an ‘ab-
solute geometrical space’ of any kind.9 These two conceptions of background
independence—the old, stricter and ‘weaker’ one, and the new, generalized and

9 Hereafter, let us call a set equipped with some structure a (mathematical) ‘space’. This is pretty
much how a ‘geometrical space’ has been conceived in the physics (Stachel, 2003) and mathematics
(MacLane, 1986) literature. Abiding by set-theoretic notions is not necessary, however. For example,
the novel ‘quantization on a category’ scheme recently proposed by Isham (2003, 2004a,b, 2005),
may still be perceived as being background dependent in the strict sense of B2 (see the next paragraph
in the main text); albeit, the background is not a point-set proper, but a category—a mathematical
universe of generalized (and in a certain sense, variable!) sets, as well as of maps (:morphisms)
between them. A die-hard background independent ‘quantum gravitist’ might still regard such a
scheme as being background dependent in disguise. But let us set aside such ‘extremist’ and ‘purist’
views, and plough on. For in any case, the backgrounds involved in Isham’s work (e.g., discrete
topological spaces or causal sets) are far from being smooth manifolds, and are by no means fixed.
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‘stronger’ one—are pretty much how they have been recently expressed in Kribs
and Markopoulou (2005) as a distillation from Butterfield and Isham (2000):

B1. ‘Weak’ Background Independence (WBI): “...Background indepen-
dence

1. A quantum theory of gravity is background independent if its basic quantities and
concepts do not presuppose a background metric.”

B2. ‘Strong’ Background independence (SBI): “Background independence

2. A quantum theory of gravity is background independent if there is no fixed theoretical
structure. Any fixed structure will be regarded as a background...”

There are strong Leibnizian undertones in SBI, in the following sense: the true
QG must be formulated in a relational way, without reference or recourse to any
‘absolute’, ether-like background structure (e.g., ‘spacetime’) whatsoever (Smolin,
2005).

In this respect, it is fair to say that so far (non-perturbative) string theory
has not managed to achieve a background independent formulation of QG even
in the restricted (B1) sense, since the whole formalism and interpretation of the
theory vitally depends on a background (usually taken to be Minkowski) metric
(space). Even LQG, although it is background metric independent (WBI), it is
not (yet) background independent in the stronger sense (SBI), since, as noted
earlier, its formulation relies heavily on manifold based CDG-means—i.e., the
background in this case being the geometrical differential (spacetime) manifold
and thus the theoretical/mathematical framework employed is effectively the CDG
of such smooth ‘domains’. The spacetime continuum and its pathologies (e.g.,
singularities and associated infinities) is indeed evaded, but, as mentioned briefly
before, only after a canonical-type of quantization procedure is exercised on
the classical theory (:GR) and its supporting spacetime continuum (Rovelli and
Smolin, 1995; Ashtekar and Lewandowski, 1997a,b; Thiemann, 1998; Bojowald,
2001; Modesto, 2004; Husain and Winkler, 2004).

On the other hand, we have Abstract Differential Geometry (ADG)—the
purely algebraico-categorical (:sheaf-theoretic) framework in which one can do
differential geometry in a manifestly background manifold independent, thus ef-
fectively Calculus-free, way (Mallios, 1998a,b, 2005). Indeed, in a Leibnizian–
Machean sense (Mallios and Raptis, 2005), the entire differential geometric ADG-
machinery focuses on, and derives directly from, the algebraically (i.e., sheaf
theoretically) represented dynamical relations between the ‘geometrical objects’
that ‘live’ on ‘space(time)’—the dynamical fields themselves—without that back-
ground ‘space(time)’ playing any role, thus having no physical significance what-
soever, in the said field dynamics (Mallios, 1998a,b, 2005; Mallios and Raptis,
2001, 2002, 2003, 2005). Moreover, the dynamics is still represented by differ-
ential equations proper between the ADG-fields; albeit, the latter are abstract,



‘Third’ Quantization of Vacuum Einstein Gravity and Free Yang–Mills Theories 1143

algebraico-categorical expressions involving equations between sheaf morphisms
that the fields are modelled after, without recourse to a base spacetime manifold
arena for their geometrical support and interpretation (:‘spacetime picturization’).
So far, ADG has enjoyed numerous applications to gauge (:Yang–Mills) theories
and gravity (Mallios, 1998a,b, 2001, 2002, 2005; Mallios and Raptis, 2001, 2002,
2003, 2005; Raptis, 2006a,b,c).

In the present paper we employ the purely algebraic (:sheaf-theoretic) and
manifestly background (spacetime) manifoldless concepts and technology of ADG
in order to arrive at a ‘universal’, because manifestly functorial, field-quantization
scenario for (free) Yang–Mills fields, including (vacuum) Einstein gravity which
from an ADG-theoretic perspective is regarded as another gauge theory (Mallios,
2001, 2005; Mallios and Raptis, 2001, 2002, 2003, 2005; Raptis, 2006a,b,c).
The basic sheaf-theoretic machinery is sheaf cohomology, while the scenario
formally resembles canonical quantization, but it expressly avoids any mention of
or reference to a background geometrical (spacetime) manifold structure. Rather, it
is an entirely relational (:algebraic) scheme since, as befits ADG, it concerns solely
the ADG-fields (vacuum gravitational and free Yang–Mills) involved. In particular,
the said canonical quntization-type of scenario involves our positing non-trivial
local commutation relations between certain characteristic local (:differential)
forms that uniquely characterize sheaf cohomologically the ADG-gauge fields
and their particle-quanta. In turn, in a heuristic way these forms may be physically
interpreted as abstract position and momentum determinations (:‘observables’),
hence the epithet ‘canonical’ adjoined to the noun ‘quantization’ above. The base
spacetime manifoldless sheaf cohomological ADG-field quantization proposed
here is coined ‘third quntization’ so as to distinguish it from the usual manifold
and CDG-based 2nd and, of course, 1st-quantization.

The paper is organized as follows: in the next section (2) we recall cer-
tain pivotal results from various applications of ADG to vacuum Einstein grav-
ity (VEG) and free Yang–Mills (FYM) theories; in particular, to the geometric
(pre)quantization and second quantization thereof. Based on these results, we
then maintain that we already possess a geometrically (pre)quantized and sec-
ond quantized vacuum Einstein gravitational and free Yang–Mills field dynamics.
Especially, we highlight how the background spacetime manifold independent
ADG-formalism enables us to:

1. Extend the current so-called ‘gauge theory of the second kind’ (:local
gauge field theory) to what is here coined ‘gauge field theory of the
3rd kind’ (Mallios and Raptis, 2005; Raptis, 2006a,b,c), which, although
manifestly local like its predecessor, it is not local(ized) on an external (to
the gauge fields themselves) geometrical spacetime continuum.

2. Effectively halve the order of the formalism, since in our scheme the purely
gauge connection field D, and not the metric field gµν (or equivalently, the
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tetrad field eµ), is the sole dynamical variable (Mallios and Raptis, 2003,
2005; Raptis, 2006a,b,c). This enables us to contrast our purely gauge-
theoretic ADG-gravitational formalism against the manifestly background
differential spacetime manifold dependent, hence also CDG-based, second
(:Einstein) and first order (Ashtekar-Palatini) formalisms. Fittingly, we
coin our approach ‘ 1

2 -order formalism’.
3. Pave the way towards 3rd-quantization, by evading altogether a back-

ground spacetime manifold (thus also the CDG-based 1st and 2nd-
quantization scenaria), and by concentrating instead on local algebraic
dynamical relations between the ADG-fields involved ‘in-themselves’.10

Thus, in Section 3 we entertain the possibility of extending 2nd to 3rd-quantization
in a way that suits the formal ADG-gauge field theory of the 3rd kind and its
physical semantics. Third quantization is a heuristic conception of a dynami-
cally autonomous, because external (:background) spacetime manifoldless and
thereby unconstrained, ADG-gauge field quantization scenario which is tailor-cut
for the geometrically (pre)quantized and second quantized ADG-field semantics.
It formally appears to follow a canonical route, since it involves non-trivial local
commutation relations between certain characteristic local (:differential) forms
that uniquely characterize sheaf cohomologically the ADG-gauge fields and, from
an ADG perspective on 2nd and geometric (pre)quantization, their particle-quanta.
In turn, as noted above, in a heuristic way the said forms may be physically inter-
preted as abstract position and momentum determinations, hence the commutation
relations that we impose on them may be regarded as abstract sheaf cohomologi-
cal Heisenberg uncertainty relations. Of course, the formal analogy with the 2nd
canonical field-quantization of gravity and gauge field theories stops here since,
in glaring contrast to those two scenaria, our scheme is manifestly background
spacetime manifold-free and it thus regards gravity as a pure (i.e., external space-
time continuum unconstrained) quantum gauge theory. In this way, gauge theory
of the 3rd kind and 3rd-quantization appear to go hand in hand.

We also emphasize the manifest functoriality of 3rd-quantization, and then
we draw preliminary, albeit suggestive, links between it and Mallios’ ADG-based
K-theoretic treatment of geometric (pre)quantization and second quantization in
Mallios (2004, 2005). Based on these K-theoretic smatterings, we highlight close
affinities between 3rd-quantized VEG and FYM, and our ADG-based finitary,
causal and quantal VEG and FYM in Mallios and Raptis (2001, 2002, 2003,

10 This‘autonomy’ of 3rd-quantization is its essential feature, and it makes us think of the ADG-
fields as quantum dynamically autonomous (:self-supporting; physical laws’ self-legislating) entities
reminiscent of Leibniz’s ‘entelechian monads’ (Leibniz, 1992). This analogy is consistent with the
Leibnizian (:purely relational, i.e., algebraic) conception of the differential geometry (:Differential
Calculus) that ADG propounds (cf. Mallios and Raptis, 2005; Mallios, 2002, 2006a,b for an extensive
discussion on this). The autonomy of the dynamical ADG-fields will be further corroborated by our
3rd-quantization scenario in the sequel.
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2005) and Raptis (2006a,b,c). In the concluding Section 4, we summarize our
findings and discuss briefly the potential impact that 3rd-quantization may have
on certain outstanding (and persistently resisting resolution!) problems in current
and future QG research.

2. GEOMETRICALLY (PRE)QUANTIZED AND SECOND
QUANTIZED VACUUM EINSTEIN GRAVITY AND FREE
YANG–MILLS THEORIES

From the ADG-theoretic perspective, vacuum Einstein gravity (VEG) is re-
garded and treated as a pure gauge theory, like the free Yang–Mills theories
(FYM) (Mallios, 1998a,b, 2001; Mallios and Raptis, 2001, 2002, 2003, 2005;
Raptis, 2006a,b,c). This means that the sole dynamical variable in the theory is
an algebraic A-connection D on a vector sheaf E , the (Ricci scalar) curvature of
which, R(D), obeys the equation

R(E) = 0 (1)

The corresponding formalism has been coined ‘half-order formalism’ and it should
be contrasted against Einstein’s original 2nd-order one, where the only gravita-
tional dynamical variable is the smooth spacetime metric gµν . Perhaps more im-
portantly vis-à-vis current QG trends,, ADG-gravity should be contrasted against
the more recent Ashtekar-Palatini 1st-order formalism (Ashtekar, 1986), in which
although the smooth connection assumes a more assertive and physically signif-
icant role, thus pronouncing more the gauge-theoretic character of gravity, the
metric is still present in the guise of the smooth tetrad field eµ.

In ADG-gravity, the Eq. (1) is obtained from varying with respect to D an
Einstein-Hilbert action functional EH on the affine space AA(E) of A-connections,
which may be formally identified with the configuration space in the theory Mallios
and Raptis (2003). This is in contrast to both the 2nd and the 1st-order formalism
in which variation of the Einstein-Hilbert functional with respect to the metric
and, what amounts to the same, with respect to the vierbein field respectively,
produces (1). Moreover, in the 1st-order formalism, variation with the connection
field produces the auxiliary metric compatibility condition for the connection

Dg = 0 (2)

By contrast, in ADG-gravity the A-metric11 is a physically secondary (i.e., a
dynamically not primary) structure, while its compatibility with the A-connection
D is optional to the theorist, and certainly not deducible variationally from the
dynamical action, which is a functional of the connection exclusively.12

11 Symbolized by ρ in the theory (Mallios, 1998a,b, 2001; Mallios and Raptis, 2003).
12 To be sure, in ADG-gravity the usual ‘metric compatibility of the connection’ condition (2) above

is still observed, but in the other way round. That is to say, if the theorist chooses to impose
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With Mallios (1998a,b, 2005) and Mallios and Raptis (2003) as reference
guides to the technical symbols, terms, their definitions and associated construction
details, direct comparison between (1) and the FYM equation

δF(D) = 0 or �F(D) = 013 (3)

as well as between the Einstein–Hilbert action functional EH and the Y-M one
YM on the corresponding affine spaces AA(E) of A-connections on the respective
Es involved, shows what was mentioned in the beginning, namely, that

from the ADG-theoretic vantage, VEG is a ‘pure’ gauge theory, like the FYM theory.

A more glaring contrast between ADG-gravity and the usual 1st and 2nd-order
formulation of GR (both of which rely mathematically on the CDG of C∞-smooth
pseudo-Riemannian manifolds) is that it does not employ at all any background
geometrical locally Euclidean space (:differential manifold) to formulate the
theory differential geometrically. Rather, it relies solely on purely algebraico-
categorical (:sheaf-theoretic) means to formulate its concepts and develop its
constructions. It follows that

the theory’s physical semantics does not involve any background spacetime continuum
interpretation and its associated ‘geometrical picturization’ either.

All that is involved in ADG-gravity—its fundamental, ‘ur’ element so to speak—is
the ADG-gravitational field F, which is defined as a pair

F := (E,D) (4)

consisting of a vector sheaf—by definition, a locally free A-module of finite rank
n on an in principle arbitrary topological space X,14 and a linear, Leibnizian sheaf

an A-metric structure ρ in the theory (:on E), then she might like to make sure that this metric
is compatible with (i.e., it respects) the A-connection D, which is the primary dynamical struc-
ture on E . Thus, in ADG-gravity one talks about the ‘connection compatibility of the metric’,
which is equivalent to the following ‘horizontality condition’ for the connection on the tensor prod-
uct vector sheaf HomA(E,E∗) = (E ⊗A E)∗ = E∗ ⊗A E∗ induced by the A-connection D on E :

DHomA(E,E∗)(ρ̃) = 0, where ρ̃ effectuates the canonical A-isomorphism E
ρ̃∼= E∗ between E and its

dual E∗ ≡ Hom(E, A) :� �, Mallios and Raptis (2003).
13 Where F (D) is the curvature (:field strength) of the Yang–Mills connection D, while δ and � the

ADG-versions of the usual coderivative and Laplacian differential operators, respectively.
14 A is a sheaf of unital, and associative differential (and not necessarily functional, strictly speaking)

K-algebras (K = RX, CX : the constant sheaf of real or complex numbers over X) called the structure
sheaf of generalized arithmetics (the terms ‘coefficients’ and ‘coordinates’ are synonyms to ‘arith-
metics’). By definition, E is locally a finite power of A: �(U,E) := E(U ) ≡ E |U � A(U )n = An(U ),
U open in X. At the same time, X is usually taken to be .
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morphism D, the A-connection, acting on E’s local sections in E(U ). This is a
particular instance of the general ADG-theoretic notion of a field F as a pair (E,D),
which has been abstracted from the usual conception of a field as a connection on
a smooth principal fiber (or its associated/representation vector) bundle.15

Due to the manifest absence in ADG-VEG of a smooth background spacetime
manifold,

the ADG-gravitational field can be regarded as an external smooth spacetime uncon-
strained gauge system.

This is another result supporting our claim that ADG-gravity is a pure gauge
theory. Moreover, this fact has profound consequences for plausible quantization
scenaria within the ADG-framework as we shall argue in the sequel. For one thing,
while the usual notions of ‘space’ and ‘time’ are not primary in ADG-field theory,
they may still be thought of as being ‘inherent’ in the ur-concept of ADG-field.
For example, ‘space’ may be thought of as being already effectively encoded in A
(e.g., Gel’fand duality) (Mallios, 2002, 2004, 2006a,b; Mallios and Raptis, 2003,
2005),16 while an abstract notion of ‘time’ (:‘dynamical change’ or ‘progression’)
is arguably already inherent in the dynamical evolution equation (1) for E’s states
(:local sections) on which the ADG-gravitational A-connection field D acts, via
its (Ricci) curvature, to change them dynamically.

In fact, as it must have already been transparent from the exposition so far,
one can adopt and adapt the entire gauge field-theoretic conceptual jargon and
technical machinery to ADG-field theory, briefly as follows: one can cover the
base topological space X by a system U of local open gauges U and relative
to it consider local gauge frames eU (U ∈ X open) constituting local bases of
E(U ).17 Then, in view of the aforementioned local isomorphism E(U ) � An(U ),
one identifies the natural gauge (:structure) group sheaf (:principal sheaf Vassiliou,
1994, 1999, 2000; Mallios, 1998a, 2005) of the ADG-gauge field pair (E,D) with

AutE(U ) = EndE(U )• = Mn(A(U ))• = GL(n, A)(U ) (5)

the group sheaf of local automorphisms of E . This latter group sheaf effectuates in
ADG-gravity the abstract version of the Principle of General Covariance (PGC),
since it is the ADG-analogue of the Lie group GL(4, R) of general coordinate

15 For example, the classical electromagnetic field of Maxwellian electrodynamics is regarded as the
pair (L,D) consisting of a connection D on a line bundle L (:the associated bundle of the U (1)
principal fiber bundle of electrodynamics) (Manin, 1988). Analogously, the Maxwell field in ADG is
defined as a connection on a line sheaf L (:a vector sheaf of rank 1) (Mallios, 1998a,b, 2005; Mallios
and Raptis, 2002, 2003).

16 Much like in the usual theory (:CDG), a differential manifold M can be derived from the structure
sheaf A ≡ C∞

M of germs of smooth (R-valued) functions on it as the latter’s (real) Gel’fand spectrum.
17 That is, any local section s ∈ E(U ) can be expanded as a unique linear combination of the n linearly

independent local sections in eU , with coefficients in A.
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transformations in the 4-dimensional spacetime manifold based GR (Mallios and
Raptis, 2003, 2005; Raptis, 2006a,b,c). Moreover, the principal sheaf AutE is
the sheaf-theoretic ADG-analogue of the ‘structure’ group Diff(M) of the base
differential spacetime manifold of GR,18 it too effectuating a ‘global’ version
of the PGC of GR in ADG-gravity. In turn, as briefly mentioned before, E may
be regarded as the associated (alias, representation) sheaf of the principal sheaf
AutE , carrying a representation of the (local) structure group GL(n, A) in its fibers
(alias, stalks). We may summarize graphically the above in the following diagram,
which we borrow from Mallios (2005):19

A. ‘proper field’ D B. group of internal symmetries (:‘esoteric Kleinian
geometry’ of the particle associated with the field)

D. representation C. principal sheaf

(vector) space (:vector via the field’s automorphisms in AutE
sheaf E) of representation

Note in the diagram above that by ‘proper field’ we refer to the connection
part D of the ADG-field pair F = (E,D). This separation and distinction between
the ‘proper field’ (D) and the ‘total field’ F = (E,D) may seem superfluous at
first sight, but it is of great semantic significance: namely, in ADG the field
proper is the connection D existing ‘out there’ independently of us,20 which is
then geometrically materialized (:represented) by E when we coordinatize it by
introducing a structure sheaf A of our choice. The deeper significance of this
distinction will become clearer in the next section where we introduce our third
ADG-field quantization scenario and we discuss the A-functoriality of the ADG-
gravitational dynamics (1), of 3rd-quantization in general, as well as the principle
of ADG-field realism that this functoriality entails.

It is fitting to stress at this point that, in the past (Mallios and Raptis, 2003,
2005; Raptis, 2006a,b,c) the purely gauge field-theoretic ADG-perspective on

18 Indeed, by assuming C∞
X as structure sheaf A in the theory, X can be identified with a smooth manifold

M by Gel’fand duality as briefly noted earlier, and then plainly, by definition: AutM ≡ Diff(M).
19 I wish to thank Mrs Popi Mpolioti, of the Algebra and Geometry Section, Maths Department,

University of Athens, for giving me the LaTeX graphics for this ‘categorical/commutative’ diagram,
and of course to Tasos Mallios for permitting me to borrow and slightly modify it from his latest
book (Mallios, 2005).

20 That is, independently of our generalized measurements (:‘coordinatizations’) in A and associated

geometrical representations by E loc.= An.
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gravity has been coined ‘gauge theory of the third kind’, due to the following
features:

1. As noted earlier, the sole dynamical variable is the algebraic A-connection
D (: 1

2 -order formalism);
2. The scheme is manifestly local (:sheaf-theoretic) like the current gauge

theories of the second kind, and in contradistinction to Weyl’s original
gauge theory of the first kind, which was a global gauge (:scale) theory;

3. On the other hand, our ADG-gauge field theory is not local in the usual
sense of the modern-day gauge theories of the second kind—i.e., the
gauge transformations (and symmetries) are not localized over an external,
base (:background) spacetime continuum (:manifold), since the latter does
not exist in our theory. All there is in our scenario is the dynamically
autonomous ADG-gravitational field (E,D), which does not depend on
a background spacetime manifold, and solely in terms of which (and its
curvature) the VEG dynamics is expressed as in (1);

4. It follows that in our scheme, unlike the physical semantics of nowadays
gauge theories of the second kind, there is no distinction between exter-
nal (‘spacetime’) and internal (‘gauge’) transformations (and dynamical
symmetries). All our transformations (and dynamical symmetries) are ‘in-
ternal’ (:gauge), taking place within the ADG-gravitational field (E,D),
and are represented by AutE .

5. The features above reveal an unprecedented fundamental dynamical au-
tonomy in ADG-gravity, which is part and parcel of the theory’s genuine
background spacetime manifold independence. Namely, all that ‘exists’
and is of physical significance in ADG-VEG (and FYM theories) is the au-
tonomous dynamical field (E,D), the law that it obeys/defines as a differ-
ential equation proper (1)–(3), and the latter’s ‘dynamical self-invariances’
(:‘autosymmetries’) in AutE , without any reference to or dependence on
an extraneous (:externally imposed) structure (e.g., background spacetime
manifold) to support that autodynamics.21

All the ideas above synergistically come to fruition when ADG is applied
for the geometric (pre)quantization and second quantization of gauge theories,
including gravity (Mallios, 1998a,b, 1999, 2004, 2005; Mallios and Raptis, 2002,
2003). Indeed, there E is regarded as the Hilbert (or Fock) A-module sheaf associ-
ated to the (principal) Klein group sheaf AutE of field automorphisms.The basic

21 Elsewhere, Mallios and Raptis (2003, 2005) and Raptis (2006a), we have coined this Leibnizian
monad-type of dynamical autonomy of the ADG-field ‘dynamical holism’, or even, ‘unitarity’. Like
Leibniz’s monads, the ADG-fields possess their own ‘dynamical entelechy’, but at the same time
unlike them, they are not ‘windowless’, as they can (dynamically) interact with each other. Here,
however, we have presented only the free field theories.
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result there is the following identification:

local quantum particle states of the field ←→ local sections of E22 (6)

which is then carried further to conclude that

every elementary field is geometrically (pre)quantizable and second quantizable, that
is to say, it admits a prequantizing vector (Hilbert E ≡ H), or a second quantizing
vector (Hilbert-Fock

∑
n∈Z+ ⊗n

AE), sheaf as the representation state space of its iden-
tical particle-quanta. In particular, the spin-statistics connection of the usual spacetime
manifold and CDG-based QFTs of matter is observed in that local quantum particle
states of boson (:integer spin) fields are represented by vector sheaves of rank n = 1
(:line sheaves), while those of fermion (:half-integer spin) fields by sections of vector
sheaves of rank n > 1.

In view of these results, we can now claim that

(1) is a geometrically (pre)quantized and second quantized version of the VEG equa-
tions, for a suitable choice23 of representation sheaf E for the free gravitational quanta.
The same holds for (3) and the free (‘bare’) gauge bosons carrying the other three
fundamental gauge forces. On the other hand, matter quanta (e.g., electrons) have con-
nections (e.g., the Dirac operator) defined on vector sheaves of rank greater than 1
(:Grassmannian A-module sheaves).

In closing this section, we note as an addendum that when for example A
is taken to be the C∗-algebra sheaf of germs of continuous C-valued functions
on a compact Hausdorff topological space X (e.g. a compact C0-manifold), the
Kleinian endomorphism algebra sheaf Mn(A)(U ) of the field may be regarded
as the field’s ‘noncommutative geometry’ à la Connes (1994) and Block (1998).
The commutative coordinate functions in A are promoted to ‘noncommutative’
ones, which now represent the field’s intrinsic (dynamical) self-transmutations
(:endo/automorphisms) in Mn(A)(U ) ≡ EndE |U . This observation will prove to
be very important in the next section where we insist that the Heisenberg-type
of canonical commutation relations defining third ADG-field quantization should
close within EndE—the noncommutative (dynamical) Kleinian ‘auto-geometry’
of the ADG-field ‘in-itself’. The latter we may metaphorically call ‘quantum field
foam’ as it is the structural quality of the ADG-field that gives it its ‘foamy’,
‘fuzzy’, dynamically ever-fluctuating character.

22 Notice here the ‘self-duality’ of the total ADG-field F = (E,D) in (5): F has a ‘particle’ (:E) and
a ‘proper field’ (:D) aspect, and it has thus been referred to as a ‘particle-field pair’ (Mallios,
2004, 2005; Mallios and Raptis, 2003, 2005). In turn, this self-duality of the total ADG-field pair F is
an abstract version of the usual ‘quantum-theoretic duality’ between the ‘wave/momentum’ (here, D)
and ‘particle/position’ (here, E) aspects of quanta, as we shall argue in the next section in connection
with our 3rd-quantization of ADG-fields. There, we shall see that ADG-fields are ‘quantum self-dual’
or ‘self-complementary’ entities (in the quantum sense of ‘complementarity’ due to Bohr)—another
feature pointing to their (quantum dynamical) autonomy alluded to earlier.

23 Effectively, for an A chosen by the theorist, since E is locally a finite power of A.
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3. THIRD QUANTIZATION OF GRAVITY AND YANG–MILLS
THEORIES

One can carry the quantum physical interpretation of the ADG-gauge field
pair (E,D) even further and envisage a canonical-type of field quantization sce-
nario along sheaf cohomological lines in the following physically intuitive and
mathematically heuristic way24 : we noted earlier that local sections of E represent
local quantum-particle states of the ADG-VEG field, while D acts on them (via
its curvature) to change them dynamically according to (1).

We can thus, continuing our anticipatory remarks in footnote 19, heuristically and
intuitively interpret the local sections of E as abstract position or coordinate determina-
tions25 of the (particle-quanta of the) field; while, as befits the (generalized) differential
operator D, interpret its effect/action on those position states as an abstract momentum
map.26

Now, since the ADG-fields (E,D) are dynamically self-supporting, au-
tonomous entities as we emphasized earlier; moreover, since they are ‘self-dual’
as it was anticipated in footnote 19,

a possible quantization scenario for them should involve solely their two constitutive
parts, namely, E and D, without recourse to/dependence on extraneous structures (e.g.,
a base spacetime manifold) for its (physical) interpretation.

Thus, in what formally looks like a canonical quantization-type of scenario,

we envisage abstract non-trivial local commutation relations between the abstract
position (:E) and momentum (:D) aspects of the ADG-fields.

To this end, we recall that

24 The arguments to be presented below are conceptual, informal and tentative, and should await a more
formal and mathematically rigorous exposition. We shall do this in a forthcoming paper (Raptis,
2006d) (see the declaration at the end).

25 After all, E is locally of the form An, and as noted earlier, A represents our abstract (local) coordina-
tizations (:local coordinate determinations or ‘measurements’) of the proper ADG-field D. In turn,
E is the carrier (alias, representation) space of the proper field D.

26 After all, momentum is normally perceived as a (‘rate’ of) change of position. Moreover, it must
be noted here parenthetically that since the topological base space X plays no important role in the
differential geometric mechanism of the theory, but it merely serves as a scaffolding or ‘surrogate
space’ for the sheaf-theoretic localization of the ADG-fields (for instance, since the gravitational
dynamics (1) is expressed categorically as an equation between A-sheaf morphisms such as the
curvature of the connection, which is an ⊗A-tensor, it ‘sees through’ X; see remarks on A-functoriality
later in this section), there is no notion of tangent space to it in ADG. It follows that the local sections
of E should not be interpreted as tangent vectors like in the usual theory (:CDG) of vector bundles
over a smooth base manifold (e.g., the tangent bundle T M); hence the theory does not accommodate
derivations, which are normally defined as maps Der : A → A and are represented by tangent vectors
to the continuum. The abstract momentum maps noted above are not derivations in the usual (:CDG,
fiber bundle-theoretic) sense.



1152 Raptis

there are certain local (:differential) forms that uniquely characterize sheaf cohomolog-
ically the vector sheaf E and the connection D parts of the ADG-fields (E,D)

Thus, the basic intuitive idea here is to identify the relevant forms and then
posit non-trivial commutation relations between them. Moreover, for the sake of
the aforementioned ‘dynamical ADG-field autonomy’, we would like to require
that

the envisaged commutation relations should not only involve just the two components
(i.e., E and D) of the total ADG-fields F, but they should also somehow close within
the Fs themselves—i.e., the result of their commutation relations should not take us
‘outside’ the total ADG-field structure (and its ‘auto-transmutations’), which anyway
is the only dynamical structure involved in our theory.27

Keeping the theoretical requirements above in mind, we recall from (Mallios,
1998a,b, 1999, 2005; Mallios and Raptis, 2002) two important sheaf cohomolog-
ical results:

1. That, sheaf cohomologically, the vector sheaves E are completely char-
acterized by a so-called coordinate 1-cocycle φαβ ∈ Z1(U ,GL(n, A)) as-
sociated with any system U of local gauges of E . Intuitively, this can be
interpreted in the following Kleinian way: since any (vector) sheaf is com-
pletely determined by its (local) sections,28 one way of knowing the latter
is to know how they transform—in passing, for example, from one local
gauge (Uα ∈ U) to another (Uβ ∈ U), with Uα ∩ Uβ �= ∅ and U a chosen
system of local open gauges covering X.29 To know something (e.g., a
‘space’) is to know how it transforms, the fundamental idea underlying
Klein’s general conception of ‘geometry’. The bottom-line here is that
the characteristic cohomology classes of vector sheaves E arecompletely

27 This loosely reminds one of the theoretical requirement for algebraic closure of the algebra of quantum
observables in canonical QG, with the important difference however that the Diff(M) group of the
external (to the gravitational field) spacetime manifold must also be considered in the constraints,
something that makes the desired closure of the observables’ algebra quite a hard problem to overcome
(Thiemann, 2001). Later on, we shall return to discuss certain difficult problems that Diff(M) creates
in various QG approaches, as well as how its manifest absence in ADG-gravity can help us bypass
them totally. For, recall that from the ADG-perspective gravity is an external (:background) spacetime
manifold unconstrained pure gauge theory (:of the 3rd kind).

28 A basic motto (:fact) in sheaf theory is that “a sheaf is its sections” (Mallios, 1998a). If we know the
local data (:sections), we can produce the whole sheaf space by restricting and collating them relative
to an open cover U of the base topological space X. This is the very process of ‘sheafification’ (of a
preasheaf) (Mallios, 1998a).

29 In particular, φαβ can be locally expressed as the A|Uαβ
-isomorphism: φα ◦ φ−1

β ∈ AutAαβ
(An|Uαβ

) =
GL(n, A(Uαβ )) = GL(n, A)(Uαβ ), in which expression the familiar local coordinate transition (:struc-
ture) functions appear. Hence, also the ‘natural’ structure (:gauge) group sheaf AutE = GL(n, A) of
E arises.
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determined by φαβ ; write:

[φαβ] ∈ H 1(X,GL(n, A)) = lim−−→U
H 1(U ,GL(n, A)) (7)

where the Us, normally assumed to be locally finite open coverings of
X (Mallios, 1998a,b; Mallios and Raptis, 2001, 2002, 2003), constitute
a cofinal subset of the set of all proper open covers of X.30 In toto, we
assume that φαβ encodes all the (local) information we need to determine
the local quantum-particle states of the field in focus (i.e., the local sections
of E).

2. On the other hand, it is well known that locallyD is uniquely determined by
the so-called ‘gauge potential’ ω, which is normally (i.e., in CDG) defined
as a Lie algebra (:vector) valued 1-form. Correspondingly, in ADG ω is
seen to be an element of Mn(�(U )) = Mn(�)(U ) = �(EndE),31 thus it is
called the local A-connection matrix (ωij ) ofD, with entries local sections
of E∗ = �. In turn, this means that locally D splits in the familiar way, as
follows:

D = ∂ + ω (8)

where ∂ is the usual ‘inertial’ (:flat) differential32 and ω the said gauge
potential. In ADG-gravity, the proper field D as a whole (:‘globally’)
represents the gravito-inertial field, but locally it can be separated into its
inertial (:∂) and gravitational (:ω) parts.33

30 An assumption that in the past has proven to be very fruitful in applying ADG to the formulation of
a locally finite, causal and quantal VEG (Mallios and Raptis, 2001, 2002, 2003; Raptis, 2006a,b,c).
We will use it in our K-theoretic musings in the sequel, but provisionally we note that the direct
(:inductive) limit depicted in (7) above is secured by the ‘cofinality’ of the set of finitary (:locally
finite) open coverings of X that we choose to employ (Sorkin, 1991; Raptis and Zapatrin, 2000, 2001;
Raptis, 2000a,b; Mallios and Raptis, 2001, 2002, 2003; Raptis, 2006a,b).

31 Note that, as also mentioned earlier in footnote 9, in ADG by definition one has: � := E∗ :=
HomA(E, A). That is, the A-module sheaf � of abstract differential 1-forms is dual to the vector sheaf
E , much like in the classical theory (:CDG of C∞-manifolds) where differential forms (:cotangent
vectors) are dual to tangent vectors, although again as noted earlier in footnote 23, in ADG the epithet
‘(co)tangent’ is meaningless due to the manifest absence of an operative background space(time) of
any kind (especially, of a base manifold).

32 In ADG, ∂ , like D, is defined as a linear, Leibnizian K-sheaf morphism ∂ : A → �, thus it is an
instance of on A-connection; albeit, a flat one (:R(∂) = 0) (Mallios, 1998a,b; Mallios and Raptis,
2001, 2002, 2003).

33 For more discussion on the physical meaning of this local separation of the proper field D into
∂ and ω, see footnote 34 below.
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Thence, the envisaged sheaf cohomological canonical quantization-type of
scenario for the total ADG-fields F = (E,D) rests essentially on positing the
following non-trivial abstract Heisenberg-type local commutation relations be-
tween (the characteristic forms that completely characterize) E (:abstract po-
sition states) and D (:abstract momentum operator). Thus, heuristically we
posit:

[φαβ, ∂ + ωij ]Uαβ
= [φαβ, ∂]Uαβ

+ [φαβ, ωij ]Uαβ
(9)

stressing also that

the local commutation relations in (9) above are well defined, since they effec-
tively close within the noncommutative (n × n)-matrix Klein-Heisenberg algebra
EndE(Uαβ ) = Mn(A(Uαβ )) = Mn(A)(Uαβ ) of the field’s endomorphisms—the field’s
‘noncommutative Kleinian geometry’ we mentioned at the end of the last section
(:quantum field foam).

This ‘algebraic closure’ is in accord with the theoretical requirement we imposed
earlier, namely that,

the abstract, Heisenberg-like, canonical quantum commutation relations between the
two components E and D of the ADG-fields should not take us outside the fields, but
should rather close within them.34

Indeed, EndE is precisely the algebra sheaf of internal/intrinsic (dynamical) self-
transmutations of the (quantum particle states of the) field—by definition, the
E-endomorphisms in HomA(E, E) (:quantum field foam). This is another aspect
of the quantum dynamical autonomy of ADG-fields:

the E (:abstract point-particle/position) part of the ADG-field is ‘complementary’, in
the quantum sense of ‘complementarity’, to D (:abstract field-wave/momentum). Thus,
the total ADG-fields Fare ‘quantum self-dual’ entities (Mallios and Raptis, 2003, 2005;
Raptis, 2006a,c), as we anticipated in footnote 19.35

Furthermore, by choosing φab = φin
ab

36 so that ω is ‘gaugedaway’—i.e., by

34 Here, one could envisage an abstract Heisenberg-type of algebra freely generated (locally) by φ

(:abstract position) and ω (:abstract momentum), modulo the (local) commutation relations (9).
Plainly, it is a subalgebra of EndE(U ), but deeper structural investigations on it must await a more
complete and formal treatment (Raptis, 2006d).

35 From our abstract perspective, the de Broglie-Schrödinger wave-particle duality is almost tautosemous
with the Bohr-Heisenberg momentum-position complementarity.

36 The superscript ‘in’ stands for ‘inertial’, and it represents a choice (:our choice!; see next footnote)
of a local change-of-gauge φin

αβ ∈ GL(n, A)αβ ≡ �(Uαβ,GL(n, A) that would take us to a locally
inertial frame of E over Uαβ ⊂ X.
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setting ω = 0,37 reduces (9) to (omitting the local open gauge indices/subscripts
‘α, β’):

[φin, ∂] = φin ◦ ∂ − ∂ ◦ φin (10)

Moreover, since we are sheaf cohomologically guaranteed that ∂ ◦ φ = 0 globally,
which is tantamount to the very existence of an A-connection D (globally) on E
Mallios (1998a,b, 2005),38 (10) further reduces to:

[φin, ∂] = φin ◦ ∂ (11)

Now, a heuristic physical interpretation can be given to (11) if we consider its
effect (:action) on a local section s ∈ Eαβ := E(Uαβ) ≡ E |Uαβ

:

[φin, ∂](s) = (φin ◦ ∂)(s) = φin(∂s) (12)

Equation (12) designates the inertial dynamical action of D (i.e., the action of its
locally flat, inertial part ∂) on (an arbitrary) s, followed by the gauge transformation
of ∂s to an inertial frame e

Uαβ

in ⊂ Eαβ ‘covarying’ with the inertio-gravitational
field. It expresses what happens to a ‘vacuum graviton state’ s when it is first acted
upon39 by the inertial part of the proper ADG-gravitational field D and then40 to
an inertial frame that in a sense ‘covaries’ with the said inertial change ∂ of s.

Perhaps one can get a more adventurous (meta)physical insight into (12) by
defining the uncertainty operator U as

U := φin ◦ ∂ ∈ EndE (13)

37 This is an analogue of the Equivalence Principle (EP) of GR in ADG-gravity, corresponding to the
local passage to an ‘inertial frame’ (:one ‘covarying’ with the gravitational field; e.g., recall Einstein’s
free falling elevator gedanken experiment) in which the curved gravito-inertial D in (8) reduces to
its flat ‘inertial’ A-connection part ∂ (Mallios, 1998a,b; Mallios and Raptis, 2001, 2002, 2003). This
just reflects the well known fact that GR is locally SR, or conversely, that when SR is localized (i.e.,
‘gauged’ over the base spacetime manifold) it produces GR (equivalently, the curved Lorentzian
spacetime manifold of GR is locally the flat Minkowski space of SR). In summa, gravity (:ω) has
been locally gauged away, and what we are left with is the inertial action ∂ of the ADG-gravitational
field D. It must be also stressed here that the choice of a locally inertial frame, like all gauge choices,
is an externally imposed constraint in the theory—‘externally’, meaning that it is we, the external
(to the field) experimenters/theoreticians (‘observers’) that we impose such constraints on the field
(i.e., we make choices about what aspects of the field we would like to single out and, ultimately,
observe/study).

38 This essentially corresponds to the fact that the coordinate 1-cocycle φαβ ∈ Z1(U ,�) is actually a
coboundary (:a closed form), belonging to the zero cohomology class [∂φαβ ] = 0 ∈ H 1(X,Mn(�)),
which in turn guarantees the existence of an A-connection on E as the so-called Atiyah class a of E
vanishes (:a(E) := [∂φαβ ] = 0) Mallios (1998a,b, 2005).

39 Recall that we are considering only vacuum gravity, in which the non-linear gravitational field
‘couples’ solely to itself(!)

40 The sequential language used here should not be interpreted in an temporal-operational sense—as it
were, as ‘operations carried out sequentially in time’.
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and by delimiting all the quantum-particle (:abstract position) states of the field
(:local sections of E) that are annihilated by it. Intuitively, these are formally the
local ‘classical-inertial’ states

Ecl
U := spanK{s ∈ E(U ) : U(s) = 0} =: ker(U) (14)

for which the abstract sheaf cohomological Heisenberg uncertainty relations (10)
vanish. Plainly, Ecl(U ) is a K-linear subspace of E(U )—the kernel of U.

On top of the above, intuitively it makes sense to assume that U is a
‘projector’—a primitive idempotent (:projection operator) locally in EndE (i.e., in
Mn(A(U )))—since the ‘gedanken’ operation of ‘inertially covarying with a cho-
sen local inertial frame’ must arguably be idempotent.41 This means that U2 = U,
so that U separates (chooses or projects out) the ‘classical’ (eigen0(U) ≡ ker(U))
from the quantum (eigen1(U)) local quantum gravito-inertial states. A formal rea-
son why we chose U to be a projection operator will become transparent in our
K-theoretic musings a little bit later.

Finally, we would like to ask en passant here the following highly speculative
question:

Could the generation/emergence of (inertio-gravitational) mass be somehow accounted
for by a (spontaneous) symmetry breaking-type of mechanism, whereby, the dynamical
automorphism groupAutE of the ADG-gravitational field (E,D) reduces to its subroup
that leaves ker(U) invariant? Alternatively intuited, could the emergence of inertio-
gravitational mass be thought of as the result of some kind of ‘quantum anomaly’ of
3rd-quantized VEG?42

Functoriality: the quintessence of 3rd-quantization

We commence this subsection by noting that in ADG-gravity the notion of
functoriality plays a very significant role and has a very precise physical interpre-
tation in the theory, with significant, we believe, implications for certain current
and future QG research issues:

41 After all, ‘inertially covarying the inertial state leaves it inertially covariant’. Or, to use a famous
Einstein ‘gedanken metaphor’: ‘jumping on a light-ray (in order to ride it) twice, simply leaves you
riding it’(!)

42 The epithet ‘quantum’ adjoined to ‘anomaly’ is intended to distinguish the effect intuited above from
the usual anomalies. A ‘quantum anomaly’ is the ‘converse’ of an anomaly in the usual sense, in
that what was a symmetry of the quantum theory (:an element of AutE in our case) ceases to be a
symmetry of the ‘classical domain’ of our theory (:ker(U)). Let it be stressed that the emergence of
gravito-inertial ‘mass’ in the sense intuited here has a truly relational (:algebraic) and ‘global’ flavour
reminiscent of Mach’s ideas: ‘global’ gravitational field symmetries in AutE are locally reduced to
inertial ones, and sheaf theory’s ability to interplay between local and global comes in handy in this
respect (Mallios and Raptis, 2005). (See further remarks below on how sheaf theory allows us to go
from ‘local’ to ‘global’, and vice versa.)
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In our scheme, functoriality pertains to A-functoriality of the VEG and the FYM
dynamics (1)–(3). This means that the geometrically (pre)quantized, 2nd-quantized and,
ultimately, 3rd-quantized VEG and FYM dynamical equations are not ‘perturbed’ at all
by our acts of coordinatization (:‘measurements’) encoded in the A that we choose up-
front to employ as structure sheaf of generalized arithmetics (:coordinates).43 Plainly,
this is so, because both the VEG curvature and the FYM field strength involved in (1)
and (3) respectively are A-morphisms (:alias, ⊗A-tensors).44

Concerning ADG-VEG in particular, A-functoriality is an abstract version of
the PGC of the manifold based GR (Mallios and Raptis, 2003, 2005; Raptis,
2006a,b,c).

At this point, before we go into discussing functoriality vis-à-vis prequan-
tization, 1st, 2nd and 3rd-quantization, we would like to dwell for a while on
how A-functoriality in ADG-VEG may evade two apparently insurmountable (by
CDG-means) problems in classical and quantum GR.

The PGC of GR, when mathematically modelled after the Diff(M) group of
the C∞-smooth spacetime manifold based (and, in extenso, CDG-founded) GR,
creates serious problems in both the classical and the quantum theory, briefly as
follows:

1. Traditionally, gravitational singularities are supposed to be a problem of
the classical field theory of gravity (:GR). There, the PGC appears to
come into conflict with the very existence of singularities to the extent
that until today there is no unanimous agreement on (or anyway, a clear-
cut definition of) what is a singularity in the theory (Geroch, 1968; Clarke,
1986, 1993). Granted that singularities are built into the differential man-
ifold that we assume up-front to model ‘spacetime’ in GR,45 it is hardly
surprising, especially in view of S1, that the usual manifold based Anal-
ysis comes short of resolving or evading them completely (Clarke, 1986,

43 This choice of ours may be understood as follows: it is we that choose an A to coordinatize the
dynamical connection field proper D and then represent it as acting on the vector sheaf E . The
latter, which is locally a finite power of A, is the representation (:associated) sheaf of the group sheaf
AutE of dynamical self-transmutations (:automorphisms) of the field, and it can thus be regarded as
the ‘carrier space’ (for the action) of D.

44 Where ⊗A is the homological tensor product functor between the relevant categories involved (mainly,
the category of A-modules). ⊗A-tensors are the ‘geometrical objects’ in our theory as, in a Kleinian
sense, they are left invariant under AutAE .

45 That is to say, singularities are loci in the spacetime continuum M in the vicinity of which some
smooth function component of the smooth metric ⊗A≡C∞

M
-tensor solution of the Einstein equations

(:gµν ) appears to blow up uncontrollably without bound, and the associated differential equations of
Einstein appear to ‘break down’ in one way or another (Clarke, 1986, 1993; Raptis, 2006a; Mallios
and Raptis, 2005). Thus, from the ADG-theoretic perspective, smooth gravitational singularities
are inherent in the coordinate structure sheaf A ≡ C∞

X that we assume up-front in GR, which is
tantamount to our a priori assumption of a base differential manifold M in that CDG-based classical
field theory of gravity (Gel’fand duality).
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1993; Raptis, 2006a; Mallios and Raptis, 2005). For, to tackle singulari-
ties, we are in the first place using a Differential Calculus (:CDG) that is
vitally dependent on a background smooth manifold that is carrying the
very singularities we are trying to resolve. There appears to be no way
out of this vicious circle as long as we insist on doing GR by manifold
based CDG-means. To paraphrase and extend a well known quote of Peter
Bergmann:

it is not surprising that GR “carries the seeds of its own destruction”
Bergmann (1979) in the form of singularities, since, the manifold based
CDG employed to develop the classical field theory of gravity already carries
in its foundation, its soil as it were (:M ↔ C∞(M))46 those very singular
germs (pun intended).

Mutatis mutandis then for the structure group of the underlying spacetime
manifold: it is not surprising that Diff(M) clashes with our attempts at
giving a clear-cut ‘definition’ of gravitational singularities. Plainly, at
the basis of the aforesaid vicious self-referential problem lies M , so that
what behooves us is to ask whether there is an alternative differential
calculus—one that does not depend at all on a base manifold, yet one
that can reproduce all the constructions and results of the manifold based
CDG, if we wished to—by which we can view (and actually do!) gravity
as a field theory.

Of course, for us this is a rhetorical question since we have ADG. By
ADG-means we have completely evaded singularities of all sorts (Mallios
and Rosinger, 1999, 2001, 2002; Mallios, 2001; Raptis, 2006a; Mallios
and Raptis, 2005), on the one hand by doing away with a base differential
spacetime manifold, while on the other, by ‘absorbing’ singularities in the
structure sheaf A of generalized arithmetics and by formulating the VEG
differential equations functorially in terms of A-sheaf morphisms. In this
way singularities are not seen to be sites where the Einstein equations
break down differential geometrically speaking, or where any sort of un-
physical infinity (in the usual analytical sense) is involved. This must be
attributed simply to the fact that ADG divests Calculus from, to use another
famous quote now of George Birkhoff (1938), “the glittering trappings
of Analysis”—arguably, our being trapped into the aforementioned vi-
cious circle reflecting our theoretical ‘imprisonment’ into the background
(spacetime) manifold that we assumed in the first place(!) By breaking
free from the background spacetime manifold M , we totally bypass sin-
gularities, while the PGC of GR ceases to be represented by Diff(M),

46 Recall Gel’fand duality: a differential manifold M is the topological algebra C∞(M) of smooth
functions on it Mallios (1986).
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but purely algebraico-categorically, by AutAE —the ADG-gravitational
field’s ‘autosymmetries’.

In addition to the above, we note that the A-functoriality of the ADG
VEG field dynamics, which corresponds to an abstract version of the PGC
of the manifold and CDG-based GR, can be readily generalized further
by categorical means to what has been coined elsewhere the Principle of
Algebraic Relativity of Differentiability (PARD) (Raptis, 2006a; Mallios
and Raptis, 2005; Raptis, 2006b,c),47 as follows:

Since, from the ADG-theoretic perspective, all differential geometry boils
down to A (Mallios, 1998a,b, 2005; Mallios and Raptis, 2003, 2005; Rap-
tis, 2006a,b)—i.e., all differential geometry (indeed, the entire aufbau of
ADG) rests on the algebra (sheaf) of ‘differentiable functions’ that we as-
sume/employ up-front (as coordinates) in the theory48 —while at the same
time the ADG-gravitational dynamics is A-functorial, any change in (our
choice of) structure sheaf A49 should not affect (i.e., at least it should leave
‘form-invariant’) the ADG-VEG field dynamics (1).

Categorically speaking, this gives rise to a natural transformation-type of
functors (MacLane and Moerdijk, 1992) between the categories involved,
which can be depicted short-handedly by the following commutative dia-
gram which we borrow almost intact from Mallios and Raptis (2005) and
Raptis (2006b):
with the NA functor above designating a change in (our choice of) struc-
ture sheaf of generalized coordinates—from, say, A1 that might have
been chosen initially, to A2—and, as a result, from vector sheaf E1 to
E2. In turn, NA induces an ‘adjoint’ functor ND, which takes us from
the ⊗A1 -functorial vacuum Einstein equations holding on E1, to similarly
⊗A2 -functorial VEG equations holding on E2. Clearly, the pair (NA,ND)
of adjoint functor-type of maps above leave the ADG-VEG equations
form-invariant, and have been coined in the past ‘differential geomet-

47 This is a generalization of how the PGC of GR was seen to be a direct consequence of Einstein’s
original Principle of Relativity maintaining that the field law of gravity should hold in any coordinate
system Einstein (1952, 1956).

48 This ‘aphorism’, i.e., that all DG rests on (our choice of) A, hinges on Mallios’ fundamental obser-
vation that the notion of differential ∂ (viz. connection D)—arguably, the basic concept with which
one can actually talk about (and do!) differential geometry—is vitally dependent on what (algebras
of) functions we declare and assume up-front as being ‘differentiable’. These functions then provide
us with the differential operators we need in order to do DG. Recall for example the very definitions
of ∂ and D in ADG: ∂ : A → � and D : E → � (Mallios, 1998a,b; Mallios and Raptis, 2003), both
of which have effectively A as their domain of definition.

49 Essentially, any choice of what we (‘arbitrarily’) perceive (and define!) as ‘differentiable functions’.
Such changes are entirely up to the theorist (and, in extenso, to the observer or experimenter), if
for instance she wishes to consider another, more suitable to the physical situation/problem she
encounters, algebra of coordinate functions in which to absorb a singularity that she confronts.
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A2(: E2
loc.

An
2 ) R(E2) = 0⊗A2

A1(: E1
loc.

An
1 ) R(E1) = 0

⊗A1

NA ND (15)

ric morphisms’ Raptis (2006b).50 Thus, the most general ADG-theoretic
expression of the PGC of GR is the following:

The VEG ADG-field equations (1) are left invariant under A-geometric mor-
phisms.

Furthermore, on the PARD and the most general ADG-expression of
the PGC above rests the following Principle of ADG-Field Realism(PFR)
(Mallios and Raptis, 2005; Raptis, 2006a,b,c):

No matter what A we use to (differential geometrically) represent the grav-
itational field dynamics,51 the latter remains unaffected (:‘unperturbed’) by
our (generalized) ‘coordinate measurements’ (in A). The connection field

proper D exists ‘out there’, independently of our coordinatizations (and
differential geometric representations) by A (and, in extenso, by E which
is locally of the form An). Moreover, since, as noted earlier, if there is any
‘spacetime’ in our theory, it is encoded in A, the ADG-gravitational field D
and the VEG law (1) that it defines differential geometrically as a differen-
tial equation proper, ‘sees through’ (i.e., it remains unaffected by) it. The
field D, and the law (1) that it defines, is oblivious to our own coordinatiza-
tions/coordinate measurements in A (:A-functoriality) and therefore also to
the ‘spacetime geometry’ encoded in the latter (by Gel’fand duality).

2. In various, both canonical and covariant, gravitational field quantization
scenaria, the background M and its Diff(M) structure (:‘symmetry’) group
create some formidable problems. Consider for example the situation in
canonical QGR approached via, say, LQG: there, since the background
spacetime continuum is retained, one regards gravity as an external space-
time constrained gauge theory; hence, one has to account for the spatial

50 The ADG-theoretic analogue of the fundamental notion of geometric morphism in sheaf and topos
theory MacLane and Moerdijk (1992). Moreover, since, as noted above, from the ADG-theoretic per-
spective all differential geometry is based on A, differential geometric morphisms may be equivalently
called A-geometric morphisms.

51 Effectively, our choice of representation sheaf E on which the connection field D acts.
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and temporal diffeomorphism constraints in the quantum theory (:primary
constraints in a Dirac-type of quantization). This results in notorious prob-
lems that CQGR has to resolve in order to proceed, such as the problem
of defining meaningful gravitational Diff(M)-invariant quantum observ-
ables,52 the associated problem of finding the physical Hilbert space of
states and its inner product, as well as the (in)famous problem of time
(Isham, 1993; Kuchař, 1993; Torre, 1994). Let alone that, on top of all
this, one has to try to preserve manifest (general) covariance in the quan-
tum theory when ab initio the canonical formalism appears to mandate
a 3 + 1 space-time split (:a foliation of the base manifold into space-like
hypersurfaces) in order for it to make any sense at all (i.e., to be able
to make sense of canonical, ‘equal-time’ commutation relations between
canonically conjugate gravitational field variables).

Covariant (:path-integral) quantization of gravity scenaria also en-
counter challenging obstacles due to the presence of the background
manifold and its Diff(M) structure group. The Ashtekar new connec-
tion variables 1st -order formalism, for example Ashtekar (1986), sig-
nificantly simplified the constraints in CQGR and revealed the ‘innate’
gauge-theoretic character of gravity; albeit, by retaining a base smooth
manifold. In particular, it showed us that the physical configuration space
in the theory is the Diff(M)-moduli space of (gauge) equivalent spin-
Lorentzian connections. It follows that a possible quantization scenario
for gravity could involve a functional integral over the said moduli space.
Thus, an integro-differential calculus on the aforesaid affine space of
smooth connections on a manifold should be developed (Ashtekar and
Lewandowski, 1995a,b), and the ever-presence of the infinite-dimensional
Diff(M) group on the background does not make life any easier. In par-
ticular, one should search for Diff(M)-invariant Faddeev-Popov-type of
measures on the moduli space of gauge equivalent connections in order
to implement the said functional integral—a daunting task indeed (Baez,
1994a,b, 1997).

At the end of the last section we are going to return briefly to these QG issues
and discuss briefly our ADG-stance against them. Now however, we would like to
go back and dwell a bit on the issue of functoriality vis-à-vis pre-, 1st-, 2nd- and
3rd-quantization.

Following (the intro to) (Mallios, 2004), we note that in much the same
way that the principal aim of geometric (pre)quantization and 2nd-quantization is
to bypass 1st-quantization and give directly a quantum description of relativistic
fields (i.e., without needing first to quantize the corresponding classical mechanical

52 Especially in vacuum Einstein gravity Torre (1993, 1994).
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particle or field theory),53 one can regard as the principal reason for the ADG-based
3rd-quantization as a need for

a direct quantum description of the ADG-fields ‘in themselves’,54 without any reference
to or dependence on an external (:background to the fields) spacetime manifold.

Since both the usual geometric (pre)quantization and second quantization sce-
naria are essentially rooted on a base spacetime manifold for their differential
geometric formulation in terms of CDG (Brylinski, 1993; Bandyopadhyay, 1996;
Woodhouse, 1997; Echeverria-Enriquez et al., 1999; Isidro, 2004), the ADG-
based 3rd-quantization may be seen as an extension and generalization of both,55

hence the epithet ‘third’ in order to distinguish between them at least nominally.
An important consequence of this is that while it is meaningful in 2nd-quantized
GR (e.g., QGR approached via LQG, which is based on the manifold dependent
Ashtekar formalism) to talk about ‘spacetime continuum quantization’,56 in 3rd-
quantized ADG-gravity it is simply meaningless, since no spacetime manifold,
external to the ADG-gravitational field, is involved (i.e., a priori assumed in the
theory).57

On the other hand, it is well known that geometric prequantization and second
quantization are manifestly functorial procedures. In what follows we would like
to ponder a bit on the functoriality of 3rd-quantization and its physical significance
in addition to our comments on A-functoriality vis-à-vis gravitational singularities
and QG issues above.

53 In this respect, we may recall from Mallios (2004) the following two contrasting quotes found in
Woodhouse (1997) and Goldstein (1950), respectively: “to find a quantum model of ... an elementary
relativistic particle it is unnecessary ... to quantize [first] the corresponding classical system” and “...
to quantize a field, we have first to describe it in the language of mechanics”. In ADG-field theory,
where, following Einstein Einstein (1956), “ [In the theory of relativity,] the field is an independent,
not further reducible fundamental concept...[so that] the theory presupposes the independence of the
field concept”, it is plain that we ‘take sides’ with the geometric quantization camp (see also Zeh,
2003 for more, but slightly differently motivated, arguments against 1st-quantization of a classical
mechanical/field theory).

54 This is an autonomous, self-quantization in accord with the quantum self-duality of the ADG-fields
we saw earlier in this section (Mallios and Raptis, 2005).

55 In line with the general fact that ADG is a significant abstraction and generalization of CDG.
56 Something that, as noted earlier, is of great import in avoiding/resolving gravitational spacetime

singularities in LQG for example (Husain and Winkler, 2004; Modesto, 2004).
57 For instance, as noted before, the evasion of gravitational singularities in ADG-gravity is secured by

the A-functoriality of the ADG-gravitational dynamics (1) as singularities of all kinds (even dense,
non-linear distributional ones never encountered before in the mathematics or physics literature!) are
absorbed in A (Mallios and Rosinger, 1999, 2001, 2002; Mallios and Raptis, 2005; Raptis, 2006a).
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Half, first and second quantization

Broadly speaking, prequantization, or what we here coin ‘half quantization’,
pertains to a formal mathematical procedure which establishes a correspondence
between the classical description of a physical system and a quantum description
of the same system. Given the standard mathematical model of the kinematical
space of a classical mechanical system as a smooth phase space M (:differential
manifold) endowed with a symplectic structure ω on it (:a symplectic manifold,
write S = (M,ω)), together with a Hamiltonian function H generating its smooth
dynamical (:time) evolution, 1

2 -quantization corresponds it to a Hilbert space H
in such a way that the transformations of M preserving ω (:the canonical or
symplectic maps) are mapped to unitary operators on H, which by definition
preserve H’s inner product (:isometries).58 In category-theoretic terms,

prequantization is a functor from the category of symplectomanifolds and canonical
morphisms, to the category of Hilbert spaces and unitary operators on them.

On the other hand, it is also well known that first quantization, unlike pre-
quantization, is not a functorial procedure. By 1st-quantization one means a cor-
respondence, like prequantization, between the aforesaid symplectic and Hilbert
space categories which furthermore carries a one-parameter group of canonical
transformations generated by a positive H , to a one-parameter group of unitaries
generated by a positive Hamiltonian operator Ĥ . The bottom line here is that

first quantization is not functorial, because energy-positivity is not preserved in transit
from the classical to the quantum description.

However, if one has established a single-quantum (:particle) description of a
physical system, one can pass functorially to a many-particle one (e.g., a quantum
field) by the process of second quantization. Briefly, starting from the single-
quantum Hilbert space H above, and depending on the spin of the particle-quanta
of the fields considered, one takes completely symmetric or antisymmetric tensor
products of any number of identical copies ofH, which when directly summed and
completed yields the so-called Fock state space in which free quanta of the corre-
sponding boson and fermion fields are supposed to live. Thus, the 2nd-quantization
functor is from the Hilbert category to itself (appropriately tensored),59 and it can
be easily seen to be positivity preserving.

To summarize, while prequantization and second quantization are functorial
constructions (procedures or correspondences), first quantization is not. Actually,
as noted above, it is the raison d’être et de faire of geometric (pre)quantization to

58 Usually one assumes H to be L2(M)—the Hilbert space of smooth (C-valued) square integrable
functions on M relative to the standard Liouville measure µM on the latter, defining a Hermitian
inner product: 〈φ|ψ〉 := ∫

φ∗ψdµM , with φ∗ the complex conjugate of φ.
59 That is, the Hilbert category is augmented by the usual tensor product ⊗, hence it is regarded as a

tensor monoidal category.
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bypass completely 1st-quantization and describe directly 2nd-quantized (:quan-
tum) fields, without recourse to a classical mechanical particle or field system
which has to be quantized first.60

ADG in second and geometric (pre)quantization: further general remarks

The aforesaid bypass of 1st-quantization by geometric quantization in order
to arrive directly at a quantum description of fields suits perfectly ADG, since
in the latter the basic objects—its fundamental building blocks or ur-elements
so to speak—are ADG-fields of the (E,D) kind. Thus, in ADG-field theory,
in keeping with the terminology and technical machinery of the manifold and
CDG-based geometric (pre)quantization (Brylinski, 1993; Bandyopadhyay, 1996;
Woodhouse, 1997; Echeverria-Enriquez et al., 1999; Isidro, 2004), albeit in a
manifestly background manifold independent way as befits ADG, the epithet
‘geometric’ to ‘(pre)quantization’ pertains to the identification of the ω of a sym-
plectic manifold—a closed differential 2-form on M—to the curvature R(D) of
a connection field D on a (Hermitian) Hilbertian representation vector sheaf E .
The latter can be regarded, via an ADG-theoretic generalization of the celebrated
Serre–Swan theorem (Mallios, 2004, 2005) originally motivated by some argu-
ments of Selesnick in the context of 2nd-quantization (Selesnick, 1983), as a free,
finitely generated projective A-module, whose (Hilbert space) stalks represent
the (pre)quantum state spaces of the ADG-field systems in focus (Mallios, 1999,
2004, 2005). In turn, (the curvature of the connction on) E obeys some sort of
quantization condition (e.g., Weil’s integrality condition), which is instrumental in
classifying sheaf cohomologically the vector sheaves involved (e.g., Chern-Weil
theorem, Chern characteristic classes, the Picard group) (Mallios, 1998b, 1999,
2005). Moreover, as we highlighted it earlier in Section 2, from a 2nd-quantization
vantage the local sections of the Hilbertian Es represent local quantum particle
states of the corresponding fields, while also an ADG-theoretic version of the spin-
statistics connection comes to identify local free boson states with local sections
of line sheaves, while local particle states of fermionic fields correspond to local
sections of Grassmannian vector sheaves of finite rank greater than 1.

All this is well done and dusted; however, here we would like to make a
couple of additional scholia in the light of 3rd-quantization presently proposed
and its A-functoriality:

60 Indeed, on general philosophical grounds, it is unnatural to suppose that there is a classical/quantum
dichotomy in Nature (pun intended). Quantum theory is the fundamental description, while all
classical ones are coarse approximations (:effective descriptions) of the fundamental quantum one
(Mallios and Raptis, 2005; Raptis, 2006a,c). To paraphrase Finkelstein: “all is quantum; anything
that appears to be classical has not been resolved yet into its quantum elements” (Finkelstein, 1996).
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1. Quantum fields are traditionally regarded as special relativistic entities,61

hence their quantum particle states have been modelled after irreducible
representations of the Poincaré group à-la Wigner. At the same time,
what has for many years stymied efforts to genuinely unite relativity with
quantum theory in a finitistic setting is the fact that, because the Lorentz
group is non-compact, there are no finite-dimensional unitary represen-
tations of it Haag (1996).62 Yet, the reader must have already observed
that our representation vector (:Hilbert A-module) sheaves E are of finite
rank, and they constitute unitary representation spaces of the ‘internal’
(:gauge) symmetry groups, which are of course compact Mallios (2004,
2005). There is no discrepancy here: 3rd-quantum field theory does not
involve any base spacetime at all—be it flat Minkowski space or a curved
gravitational background; hence, we do not have to account for a potential
conflict between finite-dimensionality of (unitary) particle representations
and the Lorentz group.63 In summa, no background spacetime, no external
spacetime symmetries; and all the symmetries of the ADG-fields are ‘in-
ternal’ (:gauge)—another positive feature of the 3rd-gauge 3rd-quantum
ADG-fields’ autonomy.

2. As noted earlier, the central result of geometric (pre)quantization is the
identification of the symplectic form ω on the C∞-manifold phase space
of a physical system with the curvature of a connection (on the same
manifold). The aforementioned A-functoriality of the ADG-VEG dynam-
ics (1) comes in handy here since the latter is an expression involving
the geometrically (pre)quantized curvature R of the ADG-gravitational
field proper D, and R(D) is an ⊗A-tensor (:an A-morphism). Pre-
cisely in this sense we maintained in section 2 that we already possess
a geometrically (pre)quantized—and, in view of (Mallios, 2004), a 2nd-
quantized—vacuum gravitational (and, in extenso, free YM) dynamics.
Moreover, this dynamics is manifestly generally covariant (in the gen-

61 After all, QFT is supposed to be a unison of SR and QM (:quantum fields over flat Minkowski space).
62 In Finkelstein (1969) for example, this shortcoming was diagnosed early in building the ‘Space-

Time Code’, or subsequently in developing the quantum net dynamics (Finkelstein, 1988, 1989), and
Finkelstein opted for sacrificing quantum mechanical unitarity (but preserve algebraic finiteness!),
because it is a non-local notion (as it involves an integral over all space). Furthermore, for quantum
fields over a curved spacetime manifold (in case for instance one wished to apply the QFTheoretic
formalism ‘blindfoldedly’ to gravity in a semi-classical manner) the situation is even worse, since
there are inequivalent (unitary) representations of the gauged (:spacetime manifold localized) Lorentz
group (Fulling, 1989).

63 In any case, it has been argued for a long time now whether exact (local) Lorentz invariance would
survive in the finitistic QG domain (:below its Planck length ‘cut-off’). Especially in the supposedly
inherently discrete setting of Sorkin’s causal set theory (Sorkin, 1995, 1997), the issue of whether
Lorentz invariance should be preserved or given up for good has recently become a caustic one, with
current tendencies leaning towards abandoning it (Henson, 2006a,b; Bombelli et al., 2006).



1166 Raptis

eralized ADG-sense of general covariance involving AutE), and it is of
course also left form-invariant under A-geometric morphisms. Finally, it
is straightforward to see that the sheaf cohomological local Heisenberg
uncertainty relations (9) defining 3rd-quantization remain invariant under
A-geometric morphisms, something that further vindicates the ‘universal-
ity’ (:‘functoriality’) of 3rd-quantization.

3. The final remark we wish to make here is a twofold, quite general
one, bearing historical/methodological undertones and going at the heart
of ADG vis-à-vis applications of differential geometry to the quan-
tum (gauge field) domain. First, we must highlight the use of sheaves
(and sheaf cohomology) instead of fiber bundles in gauge field the-
ory that ADG advocates. Fiber bundles is the mathematical theory cur-
rently used in (applications of differential geometric ideas to quantum)
gauge (field) theories. However, it has been recently felt that fiber bun-
dles come short in modelling what’s ‘really’ happening in the quantum
field and, in extenso, in the QG regime, and should thus be replaced by
sheaves. We let Haag (1996) and Stachel (1987, 2003) do the talking
here:

“ ...Germs. We may take it as the central message of Quantum Field Theory
that all information characterizing the theory is strictly local i.e. expressed in
the structure of the theory in an arbitrarily small neighborhood of a point.64

For instance in the traditional approach the theory is characterized by a
Lagrangean density. Since the quantities associated with a point are very
singular objects, it is advisable to consider neighborhoods. This means that
instead of a fiber bundle one has to work with a sheaf. The needed information
consists then of two parts: first the description of the germs, secondly the rules
for joining the germs to obtain the theory in a finite region...”

and

“ ...However, the fibre bundle approach clearly does not solve the second
problem discussed in the previous section.65 The topology of the base man-
ifold is given a priori, so that a different fibre bundle must be introduced
a posteriori for each topologically distinct class of solutions. The process
of finding the global topology cannot be formalized within the fibre bundle
approach. It appears that sheaf cohomology theory is the appropriate math-
ematical theory for dealing with the problem of going from local to global
solutions...” Stachel (1987)

64 Our emphasis.
65 That is, not fixing up-front the global topology of the manifold, and globalizing a local solution to

the Einstein equations—in toto, (analytically) extending a local solution (a local region where the
law holds) to a global one (the total spacetime manifold where the law is valid).
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also

“ ... sheaf theory might be the appropriate mathematical tool to handle the
problem66 in general relativity. As far as I know, no one has followed up on
this suggestion, and my own recent efforts have been stymied by the circum-
stance that all treatments of sheaf theory that I know assume an underlying
manifold...” Stachel (2003)

Indeed, a virtue of sheaf theory is that it ‘naturally’ effectuates easily
(virtually by the very definition of a sheaf) the much desired transition
from local to global (or ‘micro’ to ‘macro’), and by its very definition
models (dynamically) ‘variable structures’.67 We should also stress here
that sheaf theory, at least as it has been developed and used in ADG,
does not involve at all any base manifold like the sheaves in Minkowski
space (QFT) or over a general curved spacetime manifold (QG) that Haag
(implicitly) and Stachel (explicitly) allude to in the extracts above.

It is about time theoretical physicists (in prticular, quantum field the-
orists) broke from the mold of bundles and became acquainted with the
rudiments of sheaf theory. Yet, one has to appreciate the hitherto unprece-
dented in the mathematics literature use of sheaf theory, in all its generality,
power and resourcefulness, in differential geometry that ADG has brought
about That one can do differential geometry purely algebraically, indepen-
dently of any notion of ‘smoothness’ in the standard sense (of employing a
background C∞-manifold to ‘mediate’ our differential calculus) is indeed
a feat of ADG that could have enormous implications (and applications)
in current QG and quantum gauge theory research.

The second ptyche of ADG we would like to highlight is the use
of general, possibly non-normed, topological algebras in the quantum
(field) regime. Briefly, ever since the von Neumann quantum axiomatics
in Hilbert space, quantum (field) theorists have (pre)occupied themselves
with the study of von Neumann and C∗-algebras, the ‘canonical’ ex-
ample being the non- C∗-algebra B(H) of bounded operators on Hilbert
space after which algebras of quantum mechanical observables are usually
modelled (Bratteli, 1979; Haag, 1996). On the other hand, the archetypi-
cal example of a non-normable (:non-Banachable) topological algebra is
C∞(M)—in fact, the only algebra we have used so far to do differential
geometry (:CDG on manifolds). Admittedly, one could try to retain non-
C∗-ness and try to develop a differential geometry based on such algebras,
as in the ‘Noncommutative Calculus’ of Connes (1994). Yet, one could

66 The problem noted above: going (e.g., extending a solution to the field equations) from ‘local’ to
‘global’.

67 Briefly, localization (of a structure) is gauging it, and gauging (a structure) is tantamount to making
it (dynamically) variable—i.e., endowing it with a dynamical connection field.
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object even ‘in principle’ to such an endeavor by observing that operators
of quantum physical interest such as ‘position’ are essentially unbounded,
while at the same time, the reason behind the use of commutative al-
gebras as structure sheaf of generalized coordinates (as it is the case in
ADG) is Bohr’s correspondence principle. Namely that, while quantum
mechanical actions are noncommutative, our measurements (ultimately,
our geometrical representations and interpretations!) of them are essen-
tially commutative.68 The bottom line here is, to paraphrase Borchers
this time, that physicists should break free from Banach algebras (essen-
tially, from the mold of Euclidean spaces, finite or infinite-dimensional!)
and familiarize themselves with the theory of topological algebras (espe-
cially non-normed ones), which may be of great import in many physical
applications (Naimark, 1972; Kolmogorov and Fomin, 1975).

Now, in the next paragraph we vindicate some of the remarks above in the light
of (Mallios, 2004). In particular, based on Mallios’ ‘universal’ K-theoretic mus-
ings on 2nd-quantization under the prism of ADG as exposed in that paper, we
draw some telling links with our 3rd-quantization of VEG and FYM theories. In
addition, we make contact with our (f)initary, ausal and (q)uantal (:f cq) VEG
developed in the hexalogy (Mallios and Raptis, 2001, 2002, 2003, 2005; Raptis,
2006a,b).

K-theoretic underpinnings of 3rd-quantization and a link with f cq ADG-
VEG. We can relate the heuristic canonical-type of 3rd-quantization introduced
above with Mallios’ K-theoretic musings on 2nd-quantization à la ADG in Mallios
(2004, 2005).

In Mallios (2004), cogent arguments are given for representing the quantum
state spaces of (free) elementary particles of quantum (:2nd-quantized) fields by
the vector sheaves (:locally free A-modules of finite rank) involved in ADG. The
syllogism supporting those arguments takes us progressively from free (Hilbert)
A-modules, to finitely generated free A-modules, to finitely generated projective
A-modules, and finally, via an extension of the classical Serre–Swan theorem to
non-normed topological algebras,69 to vector bundles and their associated vector
sheaves E that ADG is all about.70

68 As mentioned earlier, at the bottom even of Connes’ functional-analytic/operator-theoretic noncom-
mutative geometry lies the manifold M , with its commutative coordinates.

69 The classical Serre–Swan theorem bijectively corresponds finitely generated projective C0(X)-
modules (with X a compact topological manifold, and C0(X) the algebra of continuous C-valued
functions on it) to continuous complex vector bundles over X. Moreover there are smooth analogues
of that correspondence, in that one can map bijectively C∞(X)-modules (with X now a compact C∞-
smooth manifold) to C∞-vector bundles over it. Mallios’ extension of the classical result consists in
allowing for more general (than C∞(X)) non-normed topological algebras for coefficient algebras.

70 The original motivation for this syllogism was Selesnick’s paper (1983). More technical details of the
arguments and their associated constructions, of the closely related ADG-version of the spin-statistics
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Regarding our brief remarks at the end of the last paragraph about the use
of sheaves instead of bundles and of general (:non-normed) topological algebras
instead of Banach ones, two points in Mallios (2004) must be highlighted here,
namely:

1. That once one arrives by the above syllogism and its related constructions
at vector sheaves as a model for the state spaces of field-quanta, one
forgets altogether about bundles and works exclusively with the (local)
sections of the resulting sheaves;

2. That of special interest (and use!) are certain ‘nice’ non-normed com-
mutative topological algebras A,71 which are seen to be localized sheaf-
theoretically over their Gel’fand spectra M(A) (Mallios, 1993), which
in turn are ‘topologically indistinguishable’ (e.g., homotopic) to the base
topological space X over which the A-module sheaves were defined in
the first place. This is a nice example of Gel’fand duality and it highlights
what we emphasized earlier: that if any ‘space(time)’ is involved at all in
our scheme, it is already encoded in A, while at the same time one works
solely in ‘sheaf space’ E (i.e., with E’s sections) with a purely algebraic
(:sheaf-theoretic) ‘differential geometric mechanism’ that is manifestly
A-functorial. Thus one essentially forgets about ‘space(time)’ altogether.

Keeping in mind points 1 and 2 above, in Mallios (2004) an elegant K-theoretic
formulation and of the Serre–Swan theorem (extended to non-normable topolog-
ical algebras) is given involving Grothendieck K-groups.72 In a nutshell, modulo
an group isomorphism, one establishes the following equalities

K(X) = K(A) = K(P(A)) (16)

so that X is homotopic to M(A), while the latter is assumed to be a unital,
commutative, associative, locally m-convex Q-algebra (:Waelbroeck algebra).

What is of interest to us here vis-à-vis 3rd-quantization is that in Mallios
(2004) (16) is further expressed in terms of projection operators. Briefly, one
singles out a primitive idempotent linear endomorphism P

P ∈ Mn(A) : P2 = P (17)

connection based on what is there coined Selesnick’s Correspondence, as well as the various relevant
references backing those arguments can be found in Mallios (2004, 2005).

71 Locally m-convex Q-algebras (alias, Waelbroeck algebras) Mallios (1986). An archetypical example
of a Waelbroeck algebra is C∞(X), with X a compact Hausdorff C∞-manifold. Note that here we
abuse notation and use also A for the said algebras (when Mallios uses A). We hope that the reader
will not confuse the ‘algebras’ with the ‘structure sheaves’ thereof, but anyway the distinction is
going to be clear from the context.

72 See Mallios (2004) for details of the constructions, and Mallios (1986) for the technical terminology
and notation used therein.
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whose kernel ker(P) corresponds to a finitely generated projective A-module M
M = ker(P) (18)

defining a Grothendieck class [M] (of finitely generated projective A-modules)
in K(A). In turn, P is seen to lift to a morphism

P̂ : X × An → X × An (19)

whose kernel, [M] = [ker(P̂)], is now a Grothendieck class of modules in K(X).
Moreover, one easily observes that ker(P) defines a continuous finite-dimensional
C-vector bundle (E,π,X) over X, from (the sections of) which one arrives
straightforwardly to a vector sheaf E as defined in ADG.

Regarding our 3rd-quantization scenario of ADG-fields (i.e., vector sheaves
carrying connections), the alert reader may have already spotted the ‘caveat’ in
the K-theoretic construction above:

The projection operator P in (17) may be identified with our sheaf cohomological
quantum uncertainty operator U in (13).

The full physical meaning and implications of this identification ought to be further
explored and better comprehended (Raptis, 2006d).

Finally, since the present paper is a contribution to Sorkin’s 60th birthday
fest-volume, it is fitting to make some comments on Mallios’ generalization of the
preceding K-theoretic musings (:expressions (5.12) and (5.13) in Mallios (2004))
in the light of our applications of ADG to ‘finitary, causal and quantal’ VEG. In
the said expressions, Mallios establishes that

K(X) = K(A) (20)

when X is the projective limit of an inverse system {Xi}←−−− of topological spaces

(: X = lim← Xi), each of which is the Gel’fand spectrum of a Waelbroeck algebra

(: Xi = M(Ai)), with the latter constituting an inductive system {Ai}←−−− whose direct

limit is A itself (: A = lim−→ Ai).

The reader who is familiar with our ‘finitary’ work (Raptis and Zapatrin,
2000, 2001; Raptis, 2000a,b; Mallios and Raptis, 2001, 2002, 2003, 2005; Raptis,
2006a,b), can easily translate the K-theoretic result above to the finitary case where
{Xi}←−−− is taken to be the projective system of Sorkin’s finitary poset substitutes

Pi of (a relatively compact region X of) a topological manifold M Sorkin (1991)
and {Ai}−−−→ an inductive system of incidence (Rota) algebras �i , whose primitive

Gel’fand spectra are precisely the Pis (M(�i) = Pi).73 This (K-)functorial corre-
spondence has been anticipated in Zapatrin (2001a,b), and the direct/inverse limits

73 Discrete Gel’fand duality between finitary posets and their incidence algebras (Zapatrin, 1998; Raptis
and Zapatrin, 2000, 2001; Raptis, 2000a).
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engaged in it have been interpreted as ‘classical limits’ (Raptis and Zapatrin, 2000,
2001). These observations too must await a more thorough investigation (Raptis,
2006d).

A final note on terminology. In closing this paper we would like to mention
parenthetically that the name ‘third quantization’ has already been used in the
theoretical physics nomenclature, pertaining to some ideas in early universe cos-
mology (Strominger, 1991). We should emphasize that our 3rd-quantization has
little in common with that original term, so that the two should not be confused or
thought to be somehow related. Also, the same term has been used by John Baez
in his general theoretical scheme that might be coined ‘higher-order categorical
quantization’, alias, ‘n-th quantization’ (n ≥ 2) for short (Baez, 1995). Here again,
apart from the common formal algebraico-categorical language and technology
underlying both our 3rd-quantization and Baez’s, there is little common semantic
grounds between the two schemes.

4. SUMMARY WITH CONCLUDING REMARKS

In the present paper we gathered certain central results from manifold ap-
plications of ADG to gravity and gauge theories and argued that we already pos-
sess a geometrically (pre)quantized, second quantized and manifestly background
spacetime manifold independent vacuum Einstein gravitational and free Yang-
Mills field dynamics. Based on the ur ADG-conception of a field as a pair (E,D),
we entertained the idea of a field quantization scenario called third quantization.
3rd-quantization, like geometric (pre)quantization and second quantization, was
seen to be an expressly functorial scheme which, in contradistinction to its two
predecessors, does not depend at all on a background manifold for its differential
geometric formulation and physical (:spacetime continuum) interpretation. It thus
extends them both, following the extension and generalization of the Classical
Differential Geometry (CDG) of C∞-smooth manifolds that ADG has achieved
by purely algebraico-categorical (:sheaf-theoetic) and sheaf cohomological
means.

In what formally looked like canonical quantization, but in the manifest ab-
sence of a smooth background geometrical spacetime manifold as befits ADG,
we posited abstract non-trivial local Heisenberg-like commutation relations be-
tween certain characteristic local (:differential) forms that uniquely characterize
sheaf cohomologically the ADG-fields and their particle-quanta. These forms were
then physically interpreted in a heuristic way as abstract position and momentum
‘determinations’ (:‘observables’) in accordance with ADG’s (pre)quantum field
semantics. The ADG-fields were thus said to be ‘third quantized’, and so are
the vacuum Einstein and free Yang–Mills equations that they define differen-
tial geometrically as differential equations proper, without any need arising to
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quantize an (external to the ADG-fields) spacetime continuum, simply because
such a theoretical artifact does not exist in our theory. Due to the explicit func-
toriality of our ADG-constructions, as well as the background spacetime man-
ifoldlessness that goes hand in hand with it, 3rd-quantization was seen to be
fully covariant and it totally bypasses second quantized gravity’s vital reliance
on a base M and its diffeomorphism structure group Diff(M) for its differ-
ential geometric formulation and physical interpretation as an external space-
time continuum constrained quantum gauge theory. All in all, we maintained
that

ADG-VEG is a purely gauge, external spacetime manifold unconstrained, third quan-
tized theory.

Third quantized ADG-gravity’s full covariance and background manifold-
lessness motivates us to view certain outstanding and obstinately resisting
(re)solution current QG problems under a new light. Thus, as a future project we
entertain the possibility of developing a genuinely covariant functional integral
quantization of vacuum Einstein gravity (and free Yang-Mills theories). The func-
tional integral will be over the moduli space of AutE-equivalent A-connections,
which is the physical configuration space in ADG-gravity. A generalized Radon-
type of measure, as recently developed in Mallios (2005), will be used to implement
the functional integral. What is more important, however, is to note that, due to the
manifest background spacetime manifoldlessness of ADG-gravity, we expect such
an abstract path integral scenario to be free from the problem of finding Diff(M)-
invariant measures on the moduli space of gauge equivalent connections, which
has so far stymied the usual manifold and CDG-based path integral approaches. In
this way, we will catch glimpses of a genuine equivalence between the ‘local’ (:dif-
ferential) canonical-type 3rd-quantized gravity and a potential ‘global’ functional
integral-type of one. Of course, the methods of sheaf theory, especially as they
have been developed and used by ADG, enable us to address both local (:differen-
tial canonical) and golobal (path integral) quantization issues. In any case, such an
equivalence is formally absent from the usual base spacetime manifold and CDG-
based quantization approaches, since, for instance, the smooth base spacetime
dependent canonical quantum gravity manifestly breaks covariance in two ways.
On the one hand, it mandates a 3 + 1 space-time split (:foliation of spacetime into
spacelike hypersurfaces) in order to concord with a well posed Cauchy problem in
the classical theory (:GR) that it purports to quantize, while on the other, in order
to adapt consistently the usual canonical formalism and its physical interpretation
to the said foliation, it posits equal-time commutation relations between the conju-
gate gravitational field variables restricted on the aforesaid spatial hypersurfaces.
Even in the usual supposedly covariant (:path integral) quantization schemes,
whether Lorentzian or Euclidean (which apparently does not formally distinguish
between space and time ‘directions’ ab initio), input and output field amplitude
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data still have to be specified on initial and final hypersurfaces respectively in
order to have a meaningful path integral quantum dynamical propagator between
them.

Finally, it is plain that the manifest absence of a background spacetime
manifold in 3rd-quantized ADG-VEG prompts us to emphasize that our scheme
evades totally the problem of time (Isham, 1993; Kuchař, 1993), the inner product
problem, as well as the problem of defining meaningful gravitational observables
in VEG (Torre, 1993, 1994), all of which, in one way or another, hinge on our
regarding Diff(M) automorphism ‘structure’ group of the underlying C∞-smooth
manifold of GR as gauge-constraining the gravitational field, by implementing the
PGC.

Declaration. The intuitive and heuristic ideas presented here are ‘raw’ and
under development, hence they must await a more formal treatment and a mathe-
matically rigorous exposition (Raptis, 2006d).
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POSTSCRIPT: BRIEF ENCOUNTERS OF THE THIRD KIND

It is with great pleasure that I contribute the present paper in honour of
Rafael Sorkin. In what follows, I would like to sketch out perigrammatically a
short memoir of my crossing worldlines, interaction vertices and scattering cross-
sections with Rafael and his work. In keeping with the central notions of gauge
theory of the 3rd kind and 3rd-quantization presented in this paper, the personal
account of my brief ‘other worldly’ experiences with Ray and his research may
be fittingly coined ‘brief encounters of the 3rd kind’.

Meeting worldlines and interaction vertices.. My interest in Rafael’s work
began quite unexpectedly back in 1992 when, as a first-year doctoral student at
the University of Newcastle upon Tyne, I accidentally bumped into a pre-print of a
Greek sounding physicist—Charilaos Aneziris—titled Topology and Statistics in
Zero Dimensions. In that paper, some interesting links between discrete topology
and the quantum spin-statistics connection were drawn. The work was based
primarily on a paper by Rafael Sorkin titled ‘Finitary Substitute for Continuous
Topology’ (abbr. FSCT hereafter) written a year or so earlier (Sorkin, 1991).

77 This pre-print can be retrieved from Roman Zapatrin’s personal webpage, at:
www.isiosf.isi.it/∼zapatrin.
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I thus tracked down the latter via British Interlibrary Loans (for the small
Armstrong library at Newcastle did not keep an up-to-date stock of IJTP) and
found it profound and masterfully written. I was particularly impressed by the
simplicity of ideas and the ‘unassuming’ character of Rafael’s writing. I was (I
guess I still am) a novice in QG research, thinking that the Holy Grail of modern
theoretical physics would somehow have to involve intricate physical reasoning,
dressed up in a fancy, almost cryptic, mathematical language. I was dumbfounded
to find Rafael’s ‘finitary stuff’ deep, yet simple; original and fresh, yet as if I had
subconsciously already thought about it somehow (or at least, I felt ready to sit
down and do research on it!).78

In the FSCT, I first came across the causal set (:causet) scenario. I then
read the seminal ‘Bomb Lee, Me and Sorkin’ paper (Bombelli et al., 1987) and
for a while I got hooked on causets, if only day-dreaming about them. At about
the same time, I came across David Finkelstein’s work on the ‘Space-Time Code’
(Finkelstein, 1969) and his ‘Superconducting Causal Nets’ (Finkelstein, 1988) (the
second written two decades after the first), in which I found the primitive seeds
for a ‘quantum algebraization of discrete causality’. Then, I recall my first brief
têt-a-têt meeting with Rafael at a coffee break during the 3rd Quantum Concepts
in Space and Time conference, organized by Chris Isham and Roger Penrose,
in Durham (July 1994). There, I doubt whether Rafael remembers our fleeting
encounter, I recall pitching to him the idea of algebraizing discrete causality à la
Finkelstein, and of the general idea of finding an algebraic structure to encode a
locally finite poset (be it a finitary topological substitute of the continuum, or a
causet).

Already a decade earlier, however, there was a sea-change in Rafael’s think-
ing about locally finite partial orders: from their original inception as coarse
topological approximations of the spacetime continuum, to their being regarded
as fundamental discrete causal structures to which, in the other way round, the
Lorentzian spacetime manifold of GR is now a coarse approximation. This reversal
in the physical interpretation of finitary porders is nicely accounted for in (Sorkin,
1995).79 On the other hand, the FSCT paper made a deep and lasting impression
on me in that the primitive idea was suggested to replace the operationally ideal
and ‘singular’ points of the point-set spacetime continuum by ‘fat’ regions (:open
sets) about them, the latter belonging to locally finite coverings of the topological
manifold we started with. Then, relative to such covers, Rafael extracted a finitary
poset, which, moreover, had the structure of a ‘pointless’ simplicial complex. It is

78 Indeed, I later realized that the profundity of Rafael’s papers lies in their laconic, ‘ostensive’, almost
‘in-your-face’, style and subject matter. They lay bare what is at stake and they expose their subject in
the simplest conceptual language possible, virtues that I had previously encountered only in (some,
mainly philosophical) post-30s Einstein writings, as well as in (some of) Feynman’s Lectures in
Physics.

79 Another example of a simple, fluent and conceptually deep paper.
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not an exaggeration to say that the said ‘pointlessness’ and ‘algebraicity’ were two
of my original motivations for applying category and in particular topos-theoretic
ideas to QG in my Ph.D. thesis. Such was Rafael’s influence.

Soon after I got my doctorate, I became familiar with Tasos Mallios’ ADG
theory, and as a postdoc at the maths department of the University of Athens I met
Roman Zapatrin who gave a most interesting seminar on a possible algebraiza-
tion of Rafael’s finitary-topological posets (:fintoposets) using so-called incidence
(Rota) algebras (Zapatrin, 1998). Roman invited me to St-Petersburg, where we
wrote our first collaborative paper on a possible algebraic quantization scheme for
the fintoposets of the FSCT paper based on the incidence algebras thereof (Raptis
and Zapatrin, 2000). Shortly after, by analogy to the topological case, but now
bearing in mind the aforesaid semantic reversal in (Sorkin, 1995), I conceived
of a similar ‘algebraic quantization’ scenario for causets (Raptis, 2000a) using a
discrete version of Gel’fand duality originally due to Roman.

Here I shall digress a bit and tell you a telling little anecdote: in the early
summer of the millennium year (:six years after I had first met Rafael in Durham!),
when I was a maths postdoc at the University of Pretoria, I e-mailed Rafael, excited
about my algebraic quantization of causets scheme. I never received any reply
from him during the whole summer, thus I was quite disappointed and thought
that my ideas were not that interesting to causet people after all. However, in
mid-September I unexpectedly received the following laconic, almost telegraphic,
2-line e-message:80

“ I know of your work. You formulated Gel’fand duality for causets before Djamel
Dou81 and I did, thus there is no need for us to ‘beat around the bush’.

This message highlights nicely the following triptych of traits of Rafael’s character
(of course, with a bit of generalization written in inverted commas below):

1. He ‘always’ answers laconically and to the point;
2. He ‘never’ answers to his e-mail messages promptly;
3. He is ever ready to acknowledge the work of other people and to give

credit, when credit is due;82

4. In retrospect, especially after the appearance of his fairly recent paper
(Sorkin, 1997), it is plain to me that Rafael never regards a robust and
beautiful result, such as discrete Gel’fand duality for finitary posets, as
‘closing the matter’ (i.e., that there is no need of ‘beating around the

80 The following is a reconstruction from memory of Rafael’s message, but it is pretty accurate (espe-
cially the last 4-word expression).

81 A doctoral student-collaborator of his at Syracuse University back then, I believe.
82 Although in this case, proper credit should have been given to Roman, for the Gel’fand duality for

causets (Raptis, 2000a) comes mutatis mutandis from the corresponding duality between finitary
topological posets (:simplicial complexes) and their incidence algebras (Zapatrin, 1998; Raptis and
Zapatrin, 2000, 2001; Zapatrin, 2001a).
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bush’). For the bush is always out there to be beaten,83 in the sense that a
result can always be improved, hence for instance his discovery of ideals
in incidence algebras better suited to the causet structure and its physical
semantics than our Gel’fand ideals (Sorkin, 2003).

Scattering cross-sections and diverging amplitudes.. 84 I noted earlier my
coming across Mallios’ ADG in the late 90s. Thereafter, my principal research
interests have focused primarily on applying the latter to the finitary topological, as
well as the causet, scenaria for Lorentzian QG. Thus, after those initial interactions
with Rafael, the resulting scattering saw us taking slightly different paths towards
QG. However, no matter what the future brings, no matter how much our (re)search
(ad)ventures may seem to differ or diverge from each other, Rafael’s paradigmatic
figure as a research scientist and exemplary manner as a human being in general—
his calm, low-key demeanor and mild tone of voice; his giving you the feeling that
he is listening to you quietly, but attentively and thoughtfully; his impressively
deep understanding and broad knowledge of all the different approaches to QG
(and there is a wild zoo out there!); his original, uncompromising and ‘iconoclastic’
causet research programme85 ; his kind, friendly, yet intense, almost ascetic, face,
as well as his polite and inviting manner—will always be with me to inspire and
guide my quests. All in all, I consider myself extremely privileged and fortunate
to have met Rafael personally, and to have engaged, even if just for a short while,
into deep inelastic scattering with him about QG matters; albeit, well above Planck
length(!)

So, belated happy 60th birthday, Rafael: may you keep on showing us the
way to QG for many years to come, in spite of the numerous ‘forks in the road’
(Sorkin, 1997), or of the Sirens’ song of other currently more fashionable QG
research programmes, that may ultimately (mis)lead us astray.

83 Part and parcel, I guess, of Rafael’s ‘hard-core’ physico-philosophical realism.
84 I am quite sure that Rafael, who is the epitome of modesty, won’t feel comfortable with the verbose

eulogy that follows. I apologize in advance, but in a way I feel ‘obliged’ to do it, plus I don’t know
of another way of expressing what I wish to say and what I feel.

85 Which, lately, has been growing from strength to strength, both from gathering significant results and
from gaining popularity.
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